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Chapter 1

Introduction

1.1 Difference operators and equations

A difference equation is an equation that contains sequence differences.
There are various types of difference equations namely ordinary, delay, advanced,
neutral, quasilinear, half linear, etc. These equations occur in numerous settings
and forms, both in mathematics itself and its applications to Biology, Computer

Science, Digital Signal Processing, Economics, Statistics and other fields.

The theory of difference equations, the methods used and their wide
applications have advanced beyond their adolescent stage to occupy a central
position in applicable analysis. In fact, in the last 15 years, the proliferation of the
subject has been witnessed by hundreds of research articles, several monographs,

many international conferences and numerous special sessions.
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In numerical integration of differential equations a standard approach is to
replace it by a suitable difference equation whose solution can be obtained in a stable
manner and without troubles from round-off errors. There are two types of solutions
for difference equations, one is numerical (or summation form) another one is closed
form (or exact solution). However, the qualitative properties of these solutions of
the difference equations are quite different from the solutions of the corresponding
differential equations. Solutions of several well known difference equations like
Clairaut’s, Euler’s, Riccati’s, Bernoulli’s, Verhulst’s, Duffing’s, Mathieu’s and
Volterra’s difference equations preserve most of the properties of the corresponding
differential equations ([I]).

The basic theory of difference equations is based on the difference operator
A defined as, Au(k) = u(k + 1) — u(k), where {u(k)} is a sequence of numbers.
Many authors ([I],[20],[28]) have suggested the definition of generalized difference
operator Ay on u(k), for real valued function defined on R, as

Apu(k) =ulk +0) —u(k), ke R, £>0. (1.1)
E. Thandapani, M.Maria Susai Manuel, G.B.A Xavier [35] considered the definition
of Ay as given in and developed the theory of difference equations in a different
direction. If there exists a function v(k) such that Ayv(k) = u(k), then we call this

function v(k) as A, 'u(k). In other words there exists a constant ¢; such that

Agw(k) = u(k) = v(k) = A7 u(k) +¢;, (1.2)

where ¢; is constant for all k € Ny(j) ={j, i +(,5+2¢(,...}, j =k — [%]K
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By defining the inverse A, ', many interesting results on sum of partial sums
of higher power of arithmetic and geometric functions and applications in numerical
methods ([35],[29]) have been obtained. The difference operator defined in
becomes the usual difference operator A when ¢ = 1.

In 1989, Miller and Rose [30] introduced the discrete analogue of the
Riemann-Liouville fractional derivative and proved some properties of the fractional
difference operator. In 1984, Jerzy Popenda [19] introduced a particular type of
a-difference operator on u(k) as Aqu(k) = u(k+1) —au(k), In 2011, M.Maria Susai
Manuel, et.al, [27] extended the operator A, to generalized a—difference operator

as A v(k) =v(k+/{)—av(k) for the real valued function v(k). In 2014, the authors
a(l)

in [8], have applied g-difference operator defined as A, v(k) = v(gk) — v(k) and the

difference operator A with variable coefficients defined as A v(k) = v(k+¢)—kv(k).
k(1) k(£)

These operators induce us to introduce the following partial difference
operator. The generalized difference operator and its equation with n-shift values

I = (01,005, ....,0,) # 0 on a real valued function v(k) : R” — R is defined as

%v(k:) =v(ky + L1, ko + Loy oy by + 0) — (ke Koy ooy k) = u(k). (1.3)

This operator A becomes generalized partial difference operator if some ¢; = 0. The
O

equations involving A with atleast one ¢; = 0 is called generalized partial difference
()

equation. A linear generalized partial difference equation Awv(k) = wu(k), has a
()
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numerical solution of the form,

v(k) —v(k —ml) in:u —7rl) = Au(t) (1.4)

where k — rl = (ky — rly, kg — 10, ..., k, — r{,) and m is any positive integer.

1.2 Discrete Heat Equation Model

This book aims to formulate and obtain numerical and exact (extorial)

solutions of discrete partial heat equations of rod, thin plate and medium.

(a)

Consider the temperature distribution of a very long rod. Assume that the
rod is so long that it can be laid on top of the set R of real numbers. Let
v(k1, k2) be the temperature at the real position k; and real time ky of the
rod. Assume that diffusion rate 7 is constant throughout the rod with shift
values ¢; > 0. By and Fourier law of cooling, the discrete partial heat

equation of the rod is formulated as

A U(klakQ) Y A U(klak2)7 (15)
(0,62) (££1,0)

where A = A + A and {0, > 0.
(:tel,O) (51,0) (—@1,0)

In the case of thin plate, let v(ky, ko, k3) be the temperature of the plate at

position (kq, ks) and time k3. The heat equation for the plate is
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A vk)=v A v(k), (1.6)
(0,0,¢3) 01,9
where A = A + A + A + A andeach?; >0.

(+la2) (6,000 (=£1,00)  (0,£2,0)  (0,—2,0)
(c) In the case of medium, let v(ky, ko, k3, k4, ks) be the temperature at position
(k1, ko, k3), at time ky with density (or pressure) k5. By Fourier law of cooling,

the heat equation for medium in R? is

A vk)=v A wv(k), (1.7)
(£a,85) +£(1,2,3)

where A = A+ A +A+ A +A+ A and k= (ki, ko, ks, ky, ks).
123 (1) (=) (L2)  (—f2) (L3) (—¢3)

In this book, we derive numerical (summation) and exact (extorial) solutions of
(1.5)),(1.6) and (1.7)), analyze some related Fibonacci fractional heat equations for

rod, thin plate, medium and resistor-inductor (RL) circuit using MATLAB.

1.3 About the Book

This Book consists of seven chapters. The first chapter is devoted for necessary
introduction to the thesis. The introduction contains of a description of the literature
and developments in the field of difference equations.

The second chapter deals with the discrete heat equation model using the
(-difference and g-difference operators. Applying the Fourier law of cooling, the first
breakthrough is done by the formulation of the discrete heat equation of the rod.

The four types of numerical solutions for the heat equation formulation is derived.
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Using a similar methodology, the solutions are also derived for plate and medium.
The results thus obtained are analyzed for authenticity using MATLAB by assuming
the boundary values. The diagrams generated help us to study the nature of the
diffusion of heat within the material taken for study.

The third chapter provides with the formulation of delay heat equation model.
The partial difference equation which extends its applications in heat equation is
taken for study by the application of a-f difference operator and a model for heat
transfer in the rod is arrived having recourse to Fourier law of cooling. The outcomes
are eventually extended to thin plate and medium. The outcome obtained are
validated by MATLAB. The outcomes arrived in this section gives the option for
predicting the temperature by knowing the current values at the present time.

The fourth chapter focuses on solutions of partial difference equation with
several variables. Being an application of difference operator, relevant formulae for
finite and infinite series on polynomial and rational functions in number theory
have been derived. This complex terrain of study finds its application in heat
propagation within the given medium based on the Fourier law of conduction. It
enables the optimal choice of material and gives us knowledge about the nature
of the propagation of heat. The results are verified by MATLAB to validate the
findings.

In the fifth chapter, partial Fibonacci difference equation is introduced and

subjected to study in discrete heat equation by having recourse to Fibonacci
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difference operator with shift values. This investigation involves the definition of
the Fibonacci difference operator, formulation of discrete heat equation model with
several variables and the finding of the solutions of heat diffusion in materials with
dimensions up to three. The partial Fibonacci difference operator provides a great
possibility to study the various aspects of heat equation: the transfer of heat, nature
of the material used and prediction of temperature with high accuracy having the
knowledge of the present values as the basis. Simulations supported by MATLAB
are inserted at relevant sections.

The sixth chapter analyses the flow of heat in a long rod made of
non-homogeneous multiple materials stacked together is taken for study using partial
difference equations with initial values assumed. With Newton’s law of cooling as
the basis, the Initial Value Problem (IVP) for heat transfer of the rod made of four
non-homogeneous materials is formulated as the preliminary case. The solution
arrived at for the IVP is generalized for the case of the rod with multiple materials.
The results put forth in this book work are validated by numerical examples.
The method presented here is very convenient for solving the heat equation and
determining the temperature for all periods by having the knowledge of initial
temperatures.

The seventh chapter presents the exact (closed form) solution of the heat
equation model presented in the previous chapters. This investigation is made

possible by the introduction of the new function which is defined by replacing



1. Introduction 8

polynomials into polynomial factorials in the expansion of exponential function
denoted by e, (k) entitled as extorial function. This is an original and unique
contribution to our book. Here, we focus on the fractional difference operator which
plays a pivotal role in studying numerous systems and has been widely applied in
various areas of study. As an application, we provide the solutions for discrete and
fractional difference equations controlling current flows in RL circuit. The chaos
created by the flow of current which generates heat energy in RL circuit is solved

by applying the fractional difference equation.



Chapter 2

Discrete Heat Equation Model
with Several Variables

2.1 Introduction

In this chapter, we investigate the generalized partial difference operator and
propose a model of it in discrete heat equation. The diffusion of heat is studied by the
application of Newton’s law of cooling in dimensions up to three and several solutions
are postulated for the same. Through numerical simulations using MATLAB,

solutions are validated and applications are derived.



2. Discrete Heat Equation Model with Several Variables 10

2.2 Discrete heat equation of rod

Consider the temperature distribution of a very long rod, notations, discrete
heat equation mentioned for the research problem in section 1.2(a). Since the
unknown function v(ki, k2) lies on both sides of equation (L.5)), finding exact solution
is a challenge one. We have overcome this problem. Here, we derive the temperature

formula for v(kq, ko) at the general position (ki, k2).

Theorem 2.2.1. Assume that there exists a positive integer m, and a real number

Uy > 0 such that v(ky, ks —mls) and A v(ky, k) = u (/{:1, ks) are known. Then, the
0,

heat equation (1.5)) has a solution v(ky, ke) of the form

U(kl, kQ) = U(kl, ko — mfg) + ")/Zl iqjél(kl’ ko — 7"62). (21)
Proof. Taking A v(ky, k2) = U (kl,k2> in (1.5)) gives
(£41,0)
ki ko) =y A~ u (K k 2.2
v(ky, k) (052) ( 1, k2). (2.2)
The proof of (2.1]) follows by applying the inverse principle (|1.4)) in (2.2]). O
U ki) eilkithe—t2) _ pi(k1+kz)
Example 2.2.2. F 1.3)), t, A e\t = ,
xamp rom we ge (0762)6 20— conly)
whose imaginary part yields
-1 sin(ky + ko — €3) — sin(ky + ko)
A sin(k; + k : 2.3
(0,62) (k4 kz) = 2(1 — cos¥s) (23)

Taking U (k1, ko) = sin(ky + ko + £1) — sin(ky + ko — £1) in ., using ( , ,
1
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:I:%l(kl’ kg — gg) — :t’lél(kl, kg) B i?él(k’l, k‘z — (m + 1)62) — :I:%1<kl’ kg — mﬁg)
2(1 — costs) B 2(1 — costs)
—+ Zl i’lél(k'l, kQ — 7’52). (24)

The MATLAB coding of for m =50, k1 =2, {1 =3, ks =4, {5 =5 is below:
(sin(4) — sin(9) + sin(—2) — sin(3))./(2. % (1 — cos(5))) = (sin(—246) — sin(—241) +
sin(—252) — sin(—247))./(2. * (1 — cos(5))) + symsum(sin(9 — 5. x 1) 4+ sin(3 — 5. *

r),r,1,50).

Theorem 2.2.3. Consider (1.5)) and denote v(kitty, %) = v(ki+01, %) +v(ky—{q, %)
and v(*, ko 0s) = v(x, ka+Llo)+v(*, ko—€3). Then, the following four type solutions

of the equation (1.5)) are equivalent:

(a). U(kl, k’g) = (1 — 2’)/)7”'1}(]{71, ]{72 — mfg) + Z_ ”}/(1 — 2’7)T [U(kfl ifl, k2 — (T + 1)62)} s
) (2.5)
1 ~ 7

(b). v(ky, ko) = mv(/ﬁ, ko +mly) — 2; m[v(lﬁ + 01, ky + (r —1)6y)],
(2.6)

(c). v(k, ks) = vimwﬁ by kg miy) — 3 ;f” Wk — vy, ks + (1 — 1)6)]
S %[U(/ﬁ (5420, by + 5b2)), (2.7)

(). vk, k) = %v(kzl Fmbyky +mip) — 3 ;f” Wik + 71, kg + (r — 1)05)]
— Z_ %[U(k’l + (S + 2)61, k‘g + SEQ)]. (28)

s=0
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Proof. (a). From ([1.5]), we arrive the relation
U(k’l, ]{?2) = (1 — 2’7)1)(]{?1, kg - EQ) + ’}/?](]{31 + 61, k’Q - 62) (29)

Replacing ko by ks — 1l5 in (2.9) gives expressions for v(ky, ko — rfs) and
v(ky £ b1, ko — b)) for r = 1,2,...,m. Now proof of (a) follows by applying all these

values in ([2.9)).

(b). The heat equation ([L.5)) directly yields the relation

1

U(lﬁ, kg) = mv(

kl,k’g —|—€2> — 'U(kl igl,kg). (210)

_r
(1—=27)
Replacing ko by ko + rfy and substituting corresponding ~-values in (2.10) gives (b).
(¢ ). The proof of (c) follows by replacing k; by k; — r¢; and ks by ks + 7f5 and

1 1—-2
’U(]fl, kg) = 5’0([61 — gl, kQ —|—€2) — i

U(k’l - 61, k’g) — U(kl — 261, kg)

(d). The proof of (d) follows by replacing k; by ky + r¢; and ko by ko + rf3 and
1—2y

1
U(k’l, k’g) = ;U(k’l +€1, k’Q +£2) — U(kl + 61, k‘z) — "U(k’l + 261, kg) D

Example 2.2.4. The following example shows that the diffusion rate of rod can be
identified if the solution v(ky, ks) of (L.5) is known and vice versa.
Suppose that v(ki, ko) = a***2 is a closed form solution of (1.5)), then we have

A akl—i-kz:fy[ A ak1+k2+ A ak1+k2}7

(0,62) (£1,0) (—£1,0)
which yZ@ldS ak1+k2+€2 — ak1+k2 — fy[ak1+k2+f1 + ak1+k2—f1 _ 2ak1+k2}_
a —1

; ki+k ‘ ' - -
Cancelling a™ %2 on both sides derives v = R T—
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Theorem 2.2.5. Assume that the heat difference A v(ky, k) is proportional to
(—£1,0)

A v(ky, ko) e, A wv(ki ko) =30 A wv(ki, k2). In this case, the heat equation
(8170) (7‘61’0) (‘6170)

(1.5) has a solution cos(ky + k2) if and only if either cos(ky + k2) = 0 orsinf; = 0.

Proof. From the heat equation (|1.5)) and the given condition we arrive

A U(k’l, kQ) = ’}/(1 + 5) A U(k’l, kQ) (211)
(0,[2) (€1,0)
[ei(k1+k2) + e—i(kl-i-k‘g)]
If, cos(ky + k) = 5 = v(k1, ko), then (2.11)) becomes
A [ei(/ﬁ-‘rk’Q) +e—i(k1+k2):| — /7(1 +6) A [ei(k:l-i-kz) + e—i(/ﬁ-‘y—kj)])
(0,[2) (¢1,0)

which yields ei(k1+k2+12) + efi(k1+k2+12) _ ei(k1+k2) _ efi(k1+k2)

— 7(1 + 5)6i(k1+k2+11) + e~ ikitkatl) _ gilkitk) _ p—i(kitk2)

By rearranging the terms, we find
eilkithe) feils — 1 — (14 6)e' — 1] = e7th)[eilz — 1 — (1 4+ §)e™™ — 1],
which yields either e?F152) 4 g=ilkith) — () or ¢t = =iz,

Hence cos(ky + k2) = 0 or sinl; = 0. Retracing the steps gives converse. O]

2.3 Solution of heat equation for thin plate

The discrete heat equation for the thin plate in section 1.2(b) is given by the

equation
A vk)=y A vk), A = A+ A + A+ A . (212
(0,0,€3) +la1,2) a2 (€1,0,0)  (—£1,0,0)  (0,£2,0)  (0,—£2,0)

Here we obtain four types of solutions of (2.12)) as in the rod case.
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Theorem 2.3.1. Consider the discrete heat equation (2.12). Assume that there
exists a positive integer m, and a real number {3 > 0 such that v(ky, ks, ks — ml3)

and the partial differences A\ v(ky, ko, ks) = w  (ky, ko, k3) are known functions.

i£(1y2) i6(1,2)
Then, the heat equation (2.12) has a solution v(ky, ke, k3) as
U(k) = v(kla k?a k3 - mg?)) + 7; i;(j;’m(kl? k?a k3 - T€3). (213>
Proof. Taking A wv(k)= wu (k) in (2.12)), we find
:I:E(l’g) j:‘6(1,2)
v(k)=~v A7 u (k). (2.14)

(070783) i‘6(1,2)

-1
The proof of (2.13)) follows by applying inverse principle of A on ([2.14). O
43

Consider the following notations which will be used in the Theorem [2.3.2]
V(a2 £ L2y, %) = v(ki £ b, ko, ) 4+ v(k, ke £ 4o, %) also

U(*, ]{3(273) + 6(273)) = U(*, k?g + EQ, k?3) + ’U(*, k’g, ]{53 + €3)

Theorem 2.3.2. Assume that v(ky, ke, k3) is a solution of equation ([2.12]),
v(ki£rly, kotrls) exists and denote v(ky £ 01, %, %) =v(ky + l1, %, %) + (k1 — 1, *, %),

v(x, %, kg 03) = v(*, %, ks + l3) +v(*,*, ks — l3). Then, the following are equivalent:

m—1
((l). U(k’l, k’Q, k’g) = (1 - 4’7>m’l}<1{?1, ]{?2, kg — mfg) + Z ’7(]_ — 4’)/)r><
r=0
[U(k’l + 61, kQ, k’g - (7" + 1)63) + U(k)l, k?g + 627 k?g - (’I“ + ].)gg)], (215)
(b). v(ky, ko, ks) ko, K+ )
.U s s = (% s s m
1, v2, 3 (1 _47)7” 1y 2, b3 3
- z_: (1—7—4W [v(ka2) £ a2, ks + (r — 1)03)], (2.16)
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1—4y
1"

Ms

1
(c). v(k) = W—mv(k‘l mly, ko, ks + mls) — [v(ky — 1y, ko, ks + (r — 1)£3)]

T

3
L
3

1

1
— Z —T[’l}(kl — (7’ + 2)61, kg, ]{?3 —+ 7’63)] 77_[ (k’l — (T + 1)61, kg :i:gg, kg + 7’63)],

\3
I
[en}
2
I
[en}

r

(2.17)
1—4y
,7”‘

1
(d) U(]C) 7 (/ﬁ + mfl, k‘g, kg + mfg) [’U(kl + 7“61, k‘g, kg + (7" — 1)63)]

it

3
L
3
L

1
— ?[U(kl—i- (7’+2)€1,k2,k3+7’€3)] [U(k'1+ (T+1)€1,k2i€2,k3+7"€3)].

%

I

o

3

I

o

Ql
= R

(2.18)
Proof. From and . we arrive

(1) U(k) = (1—4")/)1)(]€1,]€2,]€3 - £3)+")/[’U(k)1 igl,kz,kg—&g)—i—'l}(/{l,kg :l:gg,kg—gg)].

.. 1
(11). U(k) = (i__47)’0(1{?1,]{32,]{33+63)—1ﬁ[v(kli£hk27k3)+v<k1,k2i€2,]€3)].
(). v(k) = ~olhy = b1,k s + L) = 0

U(k‘1 —gl,k’z,k’s)

—’U(lﬁ — 261, kg, kg) —U(kl —gl, kg :i:£2, ]{33)

(iv). v(k) = %v(k:l bl ke ks ly) — —— (kg + £, ko, k)

—v(ky 4201, ko, k3) —v(ky + b1, ko £ 0o, k3).
Now the proof of (a), (b), (¢), (d) follows by replacing
ks by ks — Lo, ey — 20, ., ko — mls i (i) kg by ks + o, s+ 205, ..y ko & mls in (i4)
ki and k3 by ky — 01, k1 — 204, ..., ky — mly, ks + O3, ks + 205, ..., ky, + mls in (idi)
ko and ks by i+ £, ki 200, oo o - by, ks La, ks + 205, s ke + mbs in (iv)

respectively. ]

1
The following diagrams are obtained by using (2.9), by taking v = 0.5, ¢; = 0
1

and ¢y =
2500’
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(i). boundary values for sine function are v(ky,1)=sinmly, v(1,k2)=0,v(51,k2) = 0,
(ii). for cosine function, v(ky, 1) = cosmly, v(1, ko) = —1, v(b1, k) = —1,
(iii). for sum of sine and cosine function, v(ky, 1) = sinwl; + cos s,

v(1, ko) = 1,v(51, ko) = —1 respectively.
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nit lll'
[
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g 1
Tarvgerwiums st bdich ol Bardasy Pk Terupespstn e Cherd sk oyt Fm e Bl
|| =T ——— ] —
| - L=t | L___5=fis
ns :- H-\. T !..
(l — K=
nsf -t: — '-,=JFDEI "
1 . {
i ] !-: LN b B H i
| = | a5
| i g
L1 \"K 1
i iy
= hS -
]
412 | \\\\ 1
0} i b |
i ;
il A S
If L ]
EE;} ; s S ]
) B
| e | Tawgi kb [ b



2. Discrete Heat Equation Model with Several Variables 17
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From the above diagrams, when the transmission of heat is known at the boundary

points then the diffusion within the material under study can be easily determined.

2.4 Solution of heat equation for medium

Consider the research problem for medium mentioned in section 1.2(c).
Let v be heat diffusion constant, the proportional amount of heat flows from
left to right at (ki, ko, ks, ks, ks) is A wv(k), right to left A wv(k), top to

(—41,0,0) (51,0,0)

bottom A wv(k), bottom to top A w(k), front to rear A w(k), rear to
(0,£2,0) (0,—£2,0) (0,0,¢3)

front A wv(k). By Fourier law of cooling, the heat equation for medium in R3
(0,0,~¢3)

is given by

A vk) =y A vlk), (2.19)

(£a,l5) +£(1,2,3)

where A = A+ A + A+ A + A+ A and k= (ky, ko, ks, kg, k5).
23 () (=€) (L2)  (=f2) (&) (—¥la3)
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Theorem 2.4.1. Assume that v(ky, ke, ks, ks — mly, ky — mls) and the partial
differences A wv(k) = uw (k) are known functions. Then, the heat equation
(1 2.3 +0(1,2,3)

(2.19) has a solution of the form, v(k) = v(kq, ko, k3, ka — mly, ks — mls)

m

—|—’}/Z (% (k}l,kg,kg,l{?4 — 7”£4,]{Z5 —m€5) (220)

£
1 Tlazs)

Proof. Taking A w(k)= u (k) in (2.19)), we get
+01 23 400123

o) — ~ AL u k). 2.21
( ) 7(4415)(14(1,2,3))( ) ( )

The proof follows by applying inverse principle (2.1)) on (2.21)). ]

In the Theorem [2.4.2, we use the following notations:
(ka3 £La23), %, %) = vk + 01, ko, ks, %, %) +v(ky — €1, ko, k3, *, %)
+ v(ky, ko + lo, k3, %, %) + v(kq, ko — la, k3, *, %)
+ v(ky, ko, ks + U3, %, %) + v(ky, ko, ks — 3, %, *).
V(k, keag) £ gy, %, %) = v(x, ko + Lo, kg, %, %) + 0(*, kg — lo, ks, ¥, %)

+ v(x, ko, kg + O3, %, %) + v(*, ko, k3 — {3, %, *).

Theorem 2.4.2. If v(k) is a solution of the equation (2.19) and m is a positive

integer then the following relations are equivalent:

(a) v(k) = (1 — 67y)"v(ky, ko, ks, kg — mly, ks — mls)

m—1

+ ) (1 -67) [U(ku,z:’) +l,2,3), ks — (r+ 1)ly, ks — (r+ 1)ls5) |, (2.22)

r=0
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1
- ﬁ (ka2 & s b+ (0= Dl ks + (0= 106)|, (228)
r=1

1
(C) ’U(k) = —mv(k1 — mﬁl, kQ, kg, k4 + m€4, k5 + m€5)

v
mo1— 6y
— Z ’yr [U(k?l — 7’61, k’Q, k’3, k'4 + (T - 1)84, ]{?5 + (7’ - 1)€5>]
r=1
m—1 1
— Z ?[U(kl - (7’ + 1)61, k(2’3) + €(273), k4 + 7“64, k5 + T£5)], (224)
r=0

1
(d) U(k’) = fy_mv(kl + mﬁl, k’g, l{Ig, k’4 + m€4, ]{?5 + m€5)

mo1— 6y

— Z ’_YT [’U(k’l +7"€1,k‘2,k3,]€4+(’r— 1)€4,k’5—|— (7"— 1)@5)]
r=1
m—1 1
— /}7[1)(]{}1 + (T + 1)617 k?(gyg) + 6(2’3), k’4 + 7“64, k’5 + 7”65)]. (225)
r=0

Proof. From ([2.19) and (|1.3), we arrive

(i) v(k) = (1 = 67)v(k, ko, k3, ks — Ly, ks — Us) +y[v(k@,2,3) £ l1,2,3), ka — L, ks — Us5),

. 1
(ii) v(k) = iz 67)11(161, ko, ks, ks + ly, ks + C5) — ﬂj—G’y)[U<k(l’2’3) +0l1,2,3), ka, ks)],

1 1—-6
(111) U(k‘) = ;’U(k’l — 61, k’z, kg, ]{74 + 64, k‘5 + 65) — v

U(kl - 617 k?u k37 k47 k5)
—v(ky =20y, kg, kg, ka, ks) —v(ky — b, ko) £ L23), ka, ks) and

1 —67v

1
(iv) v(k) = ;U(lﬁ + 01, ko, ks, ky + g, ks + C5) — v(ky + 01, ko, ks, ka, ks)
—v(ky + 201, ko, ks, ka, ks) — v(ky 4 01, k2,3) £ C(2,3), ka, k).
Now the proofs of (a), (b), (¢) and (d) follow by replacing

k’4 and k’5 by ]{?4 — 64, ]{?4 — 264, ceey k’m — m€4, ]{?5 — 65, k5 — 265, P k’m — m€5,
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ky and ks by ky + Ly, kg + 204, ... K + mly, ks + U5, ks + 205, ..., kyy — mls,
ke by ky — O,k — 201, oo gy — mly, ki by kg + Lo, kg + 20y, ..., ki + mly and
ks by ks + U5, ks + 20s, ..., kyy — mls,

ke by Ky + 1, ki + 20y, oo, o + mly, Ky by ka + Lo, ka4 204, ..., ki + mly and

ks by ks + s, ks + 205, ..., ky, — mls in (i), (ii), (iii) and (iv) respectively. O

The following example shows that the diffusion of medium in three dimensional

system can be identified if the solution v(ky, ko, k3, k4, k5) of (2.19) is known.

Example 2.4.3. Suppose that v(ky, ky, ks, ky, k) = efrThethsthatks 4o g closed form

solution of (2.19)), then we have A et thathsthiths — o[ A ghithathsthaths]
(£4,05) +l(1,2,3)

which yields ek1tkatkstkatks (ef4+€5 _ 1) — 7[€k1+k2+7€3+k4+/€5 (651 telhpele pote g
)

e + e~ —6]. Cancelling emtr=rhsthiths on both sides derives

latls _ 7
‘ (2.26)

7= ehh el fele fe=ble L els f o—lz — G

For the numerical verification of Theorem (a), if we take ky = 1, ko = 2, k3 = 3,

k’4 :471{55 :5,£1 = 1,62 :2763 :3764 :47€5 :5,m: ]_, th@nv<k17k27k3,k4,k5) =
e?—1

el+elte24e24e34e3—-6

el and v =
The corresponding MATLAB coding is given below:

exp(15) = (1 — 6. % (327.4114733)). A (5). * exp(—30) + symsum((327.4114733).
#(1—6.%(327.4114733)). Ar.* ((exp(16 — (r+1).%4— (r+1).%5)) 4+ (exp(14— (r+1). x
4—(r+1).%5))+ (exp(17—(r+1).%4—(r+1).%5))+ (exp(13— (r+1). x4 — (r+1).x

5))+ (exp(18— (r+1).x4—(r+1).%5))+ (exp(12— (r+1).x4—(r+1).%5))),r,0,4).
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Similarly, we can easily verify the results for Theorem[2.4.9(b),(c) and (d).

The heat equation arrived by /{-difference equations can be extended to

g-difference equations

2.5 Discrete g-heat equation

Consider, the two side temperature distribution of a very long rod. Let v(ky, k»)
be the temperature at the real time ko and real position k; of the rod. At time ko,
if the temperature v (%, k:2> ,q1 > 0 is higher than v(k, k2), heat will flow from the

k
point “L %o ky. Similarly, at time ko, if the temperature v(kiq1, k2),q1 > 0 is higher
01

than v(ky, k), heat will flow from the point k¢ to k.

The amount of increase is v(ky, kage) — v(ky, ko) is proportional to the

k k
difference, v(—l,k2> — v(ky, ko) say, a(ky,ks) v(—l,k2> — v(k1, ko) | and the
0 0

amount of increase is wv(ky,koqa) — v(ki, ke) is proportional to the difference,
v(kiqr, ko) — v(k1, k), a (v(kiqi, k2) — v(k1, k2)), a-positive diffusion rate constant
k
U(kl, kg(]g) — ’U(kl, kg) = (U(q—l, kQ) — 'U(kl, kg)) -+ Oé(’l)(qul, kg) — U(lﬁ, kg)), a > 0.
1

Here 1-D denotes one dimension.

Definition 2.5.1. An 1-D two side g-heat equation is defined as
A’U(kfl,k‘g) =a A ’U(k’l,kg) +04A’U(]€1,k2). (227)
q2 ‘11_1 a1

Similarly, 1-D two side q-heat equation with variable coefficient is defined as

A 'U(kl, k'Q) = Oé(k'Q, k’l) A 'U(kl, kQ) —+ Oé(l{?g, ]{71> A 'U(kl, k'Q), (228)
q2 q1

-1
q

where a(kq, k1) is a function of ko and k;.
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Remark 2.5.2. If v(ky, ky) = koky is a solution of (2.28]), then

(2 — D@

R

which s a constant.

2.6 Two side flow g-heat equation with constant

coefficient

In this section, we derive a solution of discrete two side flow g-heat equation ([2.27))

and also we obtain a function v(ky, ko) satisfying the equation (2.27)).

Theorem 2.6.1. Four types of solutions of 1-D two side q-heat equation ([2.27)) are

. ke < ky - }
1) v(ki, ko) — vl ki, — ) =« vl —, koqy " | +v(k1qu, kogy ") — 20(k1, ko) |,
(4) v(k1, k2) (1q£n) ;[(ql 2612> (k1q1, kaqy ") (K1, k2)
(2.29)
y 1 .
(ii) v(ky, ko) = mv(khkz(b )
- zm: - U<ﬁ k2q§_1> +v(kiqr, kags ™) (2.30)
— (1 o OZ)T ¢ ) ) )
1 (67 o kl m
(#) v(k1, ko) = 1— 2av(k1’ kaqa) — 1_ Qav(k‘lch, ka) — WU (a, kags >
- o k1 (r—1) (r—1)
+ Zm U(g,kng > +U(k’1,k2q2 ) s (231)
r=1 1

. 1 (6] 1{31 [0 m
(iv) v(ky, k2) = 1 QQU(kh kaqa) — 1_ 2av<a’k2) - mv(lﬁm, k2q5")

2

- o (r-1) 2 (r-1)
+ Z A= 20y {U(kh kagy ) + v(kigi, kagy )} - (2.32)

r=1
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-1
Proof. (i) From the linearity of A and ([2.27]), we have

q2,q1
—1
'U(kl, kZ) =aA ( A U(kl, kg) + A?J(kl, kg)) . (233)
a2 \q1~
A v(ky, ko) = u(ky, ko) and  Av(ky, ko) = w(ky, k), (2.34)
1 q1

q

are known functions, then we have a solution to (2.27)) as
v(ky, ko) — v( kl, m = az {ulkagy” k1) + w(kags " k1) } - (2.35)

In (2.35)), u(kagy ™, k1) is obtained by replacing ko by kags ™ in ([2.34) .
Substituting (2.34)) in (2.35)), we get (2.29)) which is first type solution of (2.27)).

(ii) From the g-difference heat equation ([2.27)), we arrive

k
v(k1, kaga) — v(ki, k2) = « (q—l ko) —v(ki, ko) | + a[v(kiqr, k2) — v(ky, k2)]
1
B « kq «
U(k?h k?g) = 1 2()51)(1{:17 kQQQ) - 11— QQU(E’ k’g) - 11— QO[U(quh kg) (236)

Replacing ko by k2go in (2.36)) and continuing the same process, we arrive (2.30)).
k

(iii) By replacing ki by ~L in (2.36) repeatedly, we arrive (2.31)).
0

(iv) By replacing ki by k1¢; in ([2.36) repeatedly, we arrive ([2.32)). ]

Corollary 2.6.2. Let ki, ky are non zero and qy # 1,0. Then, we have

ks (k1K)
ki +— log
kl + kg lOg(k‘le) } q2 qgn
+ - + (k )+1 (2.37)
{ e—1  logg ¢ — 1 loggs Z ke, ™) 15
: k1 + ko :
Proof. Taking v(kq, ko) = , u(ky, ko) = ko, w(ky, ko) = 11in (2.35)), we get the
42 —

proof of (2.37)). ]
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1
Corollary 2.6.3. Let ki, ko are non zero, o # 5 and ¢ # 0. Then, we have

2 o k1
kiky = = 2a>2(k1k2qQ) - m(ak‘ng)
@ ¢! ky a
— (1 — 2@)2 (k‘16]1kQCI2) - (1—_ 204) (aké) - m(lﬁqlk’g). (238)

Proof. The proof of (2.38]) follows by taking v(ky, k2) = k1ke and m = 21in (2.30)). O

Example 2.6.4. Taking k1 = 0.3, ks = 0.2, g =2 and m = 2 in , the value
of both sides of are equal and the value is 2.15.

Formula is verified by taking ky = 4, ke = 2, qo = 2, q1 = 3, in this case value
of both sides are equal, the common value is 8.

1
Corollary 2.6.5. Let ky, ky are non zero, a # 3 and ¢ # 0. Then, we have

(0% 1{71 &2 ]{Zl 2

m(akz%) + — k)

ks = S
. (1—204)2(q1

1— 2&(/€1k2%) -

OAQ 0%

(1—2a)? (hks) = 3757

+ (k1 kz). (2.39)

Proof. Taking v(ky, ko) = ki1ko and m = 1 in (2.31]), we get the proof of (2.39). O

1
Corollary 2.6.6. Let ky, ky are non zero, a # 3 and ¢ # 0. Then, we have

1 « k1 o

kiky = 7~ (kikaga) — m(a 2) — m(lﬁfhkz%)
o’ a? 5
—_— —_— . 2.4
+ = 2&>2(k1k2) + 1= 2a2(k1(hk2) (2.40)
Proof. The proof follows by taking v(ki, ks) = k1kes and m = 1 in (2.32)). O

Example 2.6.7. Formula (2.39) and (2.40) are verified by taking ki = 4, ko = 2,

=2, 1 =3 and ky =4, ks =2, ¢1 = 3 g2 = 2, respectively.
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2.7 Two side flow ¢-heat equation with variable

coeflicient
In this section, we derive solutions of one dimensional two side g-heat equation

with variable coefficient. Solutions are verified by MATLAB.

Theorem 2.7.1. Four types of solutions of 1-D two side q-heat equation with

variable coefficient are obtained as

, k @ k . .
(1) v(k, k) —v { k1, —,i = a(ky, k2) o= kaas ") + v(kaar, kagy ") — 20(ky, k) |
4

72 r=1

(2.41)
1

ﬁ [1 = 2a(k1, kagy )]

v(k1, k2q5?")

_ i a(ky, kags ™) )] (U<ﬁ,k2q§1> +v(k1q1,k2q§1)) C(242)

r=1 H [1 — 20é(k'1, kgqgil N
s=1
1 a(k:l, k?g)
ki, ko) = ———v(ki, k —————v(kq1, k
(#) v(k, k2) 1 —2a(/€1,k2)v( 1, kaga) 1 —2a(k:1,k2)v( 141, k2)
a(ky, k k
- (k) r o( L k)
[1 = 2a(kn, ko)] TT[1 — QOZ(Q—, kags )]
r=1 1
kl r—1
m [a(klw kQ)] [a(aa kQQ2 )] kl (r-1) (1)
+Z r kl {U(?J{?qQ )+U(klak2QQ )}?
r=1 [1 = 2a(ky, k)] T[T — 2a(q—, kags )] !
s=1 1
(2.43)
Oé(kla kz) ky

and (iv) v(ky, k2) = (k1. kaga) — k2)

1— 206(]€1, kg)v
klakQ)

o
1 — 2a(ky, k)] TT[1 = 20(krgn, kagy )]

=1

1-— 205(]%'1, k2) (Ch
UUﬁQh kQQQn)

<
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m alky, ka)a(kags, kags™) {olkn, kaaS ™) + vlkugt kg ™) |

+) . (2.44)
r=1 [1—2&(/{71, k’g)] H [1—20[(]{31(]1, k2q;_1)]
s=1
~1
Proof. (i) From the linearity of A , , and assuming
q2,91
k m
v(ky, k2) — v(ki, q_:‘> = a(ky, k) Z {ulky kagy™) + w(ky, k2gy ") } (2.45)
2 r=1
A ’U(kl, kg) = U(kl, kg) and Av(/ﬁ, kg) = ’UJ(kh kg) (246)
ql_l q1
Equation (2.46|) is the solution of heat equation (2.28]).
In (2.45)), u(k1, k2g2) is obtained by replacing ko by kogo in ([2.46]) .
Substituting (2.46[) in (2.45)), we get (2.41)).
(ii) From the g-Heat equation (2.28)), we have
v(ky, k2qo) afky, ko) k1 a(ky, k2)v(kiqu, ko)
ki, ko) = — — ko) — 2.47
U( b 2) 1-— 20&(]{1, /{,'2) 1-— 20&(%1, kg)v(ql7 2) 1— 20é(k1, kz) ( )
Replacing ks by k2go in ([2.47)), repeating the process we arrive ([2.42)).
k
(iii) Replacing ki by — in (2.47), we arrive (2.43).
q1
(iv) Replacing ky by ki1q1 in (2.47), we arrive ([2.44)). O

Corollary 2.7.2. Let ¢ # 0 and a(ky, ks), (K1, kago) # 5, then we have

]_ 2N Oé(kl,k’2>
[1 = 2a(ky, k2)][1 — 20u(k1, kogo)] (hihaay) [1 = 2a(ky, k2)][1 — 20u(ky, kago)]

{(%m) + (k1q1k2q2)} o _O‘é’;l{k’?)k?)] {(%/@) + (k1q1k2)}. (2.48)

Proof. Taking v(ky, kg) = ki1ks and m = 2 in (2.42)), we get (2.48]). O

kyky =
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Corollary 2.7.3. Let g1 # 0 and ok, ko) # 5, then we have
1 Oé(kl, kg) kl

ke = m(hmﬂ B [1— 2a(ky, ko)][1 — 20 (% k2>] (al@qg)

11— 2a(ky, k)][1 - 20 (% k2>] T 2a(k, k)

Proof. Taking v(ky, ks) = kiks and m = 1 in (2.43]), we get the proof of (2.49). O

Corollary 2.7.4. Let g1 # 0 and ok, ko) # 5, then we have

1 a(kla k2) kl Oé(kl,k2>
koky = ————— (k1K - = = ) (e ank
2 1-— 2@(]{)1, k2>( ! 2q2) 1-— 2@(]{1, k2) (ql 2) 1 — Qa(kl, kg)( 141 ZCIQ)
a(ky, k2)o(kiqr, k2) 9
kokq + kok ) 2.50
T 20k, k][ — 20(kg, b U2kt T Rk} (2:50)
Proof. Taking v(ky, ko) = koky and m = 1 in ([2.44), we get (2.50). 0

From our results, it is possible to present heat flows in a rod by knowing the
temperature at few positions. The results derived in this section can also be extended

to the heat equation for both thin plate and medium.



Chapter 3

Discrete Delay Heat Equation

Model

3.1 Introduction

In this chapter, we deal with the formulation of delay heat equation model. Here
partial difference equation which extends its applications in heat equation is taken
for study by the application of a-3 difference operator and a model for heat transfer
in the rod is found having recourse to Fourier law of cooling. An involved study

is carried out to evaluate the movement of heat and thus numerous results are

postulated. The results obtained are validated by MATLAB.

28
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3.2 Discrete delay heat equation of a long rod

Consider a very long rod and the notations used in section 1.2. Even though
we have assumed that heat flow is instantaneous, in reality, it takes time for heat
to flow from one point k; to its neighbouring points k; — ¢; and k; 4+ ¢; in one
dimensional flow. Let « be the positive diffusion rate constant of rod. By denoting

A = A+ A ; taking n = 2 in and cooling law of Fourier, the

a(+41,0) a(f1,0)  a(—41,0

discrete delay heat equation of rod is

A U(kﬁl,kﬁg) =7 A U(k’l,kﬁg—O’), (31)
B8(0,£2) a(+£41,0)

where o is a delay factor. Here, we discuss the numerical solution of the discrete

delay heat equation ({3.1]).

Theorem 3.2.1. Assume that m > 0 is an integer, and s > 0 which is real such

that v(ky, ko —mty) and A v(ki, ko —o) = u (ky,ke—0) are well-known. Then
Ol(ifl) a(iel)

the delay heat equation (3.1)) has a solution v(ky, ko) satisfying the relation

v(ky, k2) = B 0(k1, ke — mby) + ’YZﬁPl ol )(kh ky — o —rly). (3.2)

r=1 !
Proof. By representi A ki,ko) = u (ki,ky— o), from ((1.3]) and (3.1), we
roof. By repr nlnga(ﬂho)v( 1, k2) a(ﬂl)( 1, ko —0) rm n W

arrive

—1
v(k1, k2) — B"v(k1, ke — mba) = u (k1 ky = )5 (3.3)
B(0,62) c(£lq)

which yields (3.2]). ]
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Theorem 3.2.2. Let v(ky, k2) be a solution of (3.1) and denote v(ky £ ¢1,%) =
v(ky + 01, %) +v(ky — 1, %) and v(*, ke £ 0s) = v(*, ko + lo) +v(*, ke — l3). Then, we

have the four identities

(a). U(l{?h k?g) = Bimv(k’l, ]{?2 + mﬁg)
_ i % [?}(kl + gl, kQ — 0+ (Z — 1)62) — 204’0(]?1, k‘z + (Z - 1)62 — U)}, (34)

=1

(b) U(kl, k2) = ﬁmv(lﬁ, kg — mﬁg) + Z 52'—1,7 [U(kl + 51, kg — 262 — O')
i=1
+U(k51—£1,/€2—’i£2—0)—2061)(]{31,]{?2—2'62—0')}, (35)

1 m
(c).  v(ky,kg) = ,y—mv(kl—mﬁl,kg—i-mquLmJ) Zvﬁ[ (ky—ily, ko4 (i—1)ly+io)]

- 3 loti = (i + D ko = Dt o)
+é§jiW%r4&%w+@—D&+@—1wm (3.6)
(). v%hb%:%ﬂ%rHMh@+m&+m®—é?§@%ﬁﬂh&+@—D&+wﬂ
+z§:1 j‘_)‘l [o(ky + ily, ks + (i — 1)y + (i — 1)0)]
Em: : v(ki + (i + D)l ke + (i = 1)l + (i — 1)o)]. (3.7)

Proof. (a). From (3.1]), we find

mm¢g:%mmxﬁ49—lwh+a4@—@)

B

+U(k1—€1,k2—0)—2av(k1,k2+€2—0) . (38)
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By replacing ko by ko + lo, ko + 205, ..., ko + mly in , we obtain expressions for
v(ky, ko +1ly) and v(ky + €1, ko +1ils). Now proof of (a) follows by applying all these
values in (B.§).

(b). The delay heat equation generates

U(kl, ]{?2) = 5U(l€1,k2 — 62) + "}/|:U(l€1 -+ 61, k‘g — 62 — U)
+U<k1—gl,kg—62—0')—203'11(]{)1,]{32—62—0') . (39)

Proof follows by replacing ko by ko — lo, ko — 205, ..., ko — mls repeatedly and
substituting corresponding y-values in ([3.9)).
(¢ ). A simple calculation on gives the expression
v(ky, ko) = %v(k:l—ﬂl, k2+€2+0>—§1}(1€1—€1,kg+0')—1)(k?1—2€1, ko)+20w (ki —01, k).
By replacing ki by ki — {1, k1 — 204, ..., ky — mly and ko by ko + Uy + 0, ko + 205 +
o, ..., ko + mly + o repeatedly and applying these values complete the proof.
(d). From , v(ky, ko) = %v(k‘l + ko + 1l +0) — gv(kzl + 01, ks + 0)

—v(ky + 201, ko) + 2av(ky + 01, ka),
Replacing k1 by k1 + €1, k1 + 201, ..., k1 + mly and ko by ks + by + 0, ko + 205 + 0, ...,

ks + mly + o, we obtain ([3.7]). O

Example 3.2.3. The dissemination rate of rod is identified by the given example if
the solution v(ky, ko) of (3.1)) is known. If we try v(ky, ko) = e¥1+*2 as a closed form

solution of () then we have A etk = 7[ A efithemo A e"“*’”_"},
B8(0,£2) a(41,0) a(—¢1,0)

which yields
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€k1+k2+52 _ ﬁekﬁ-kz — ,y[ekl-i-kri-fl—a + 6k1+k2—é1—0 _ 2a6k1+k2—0] and

e —
— . Nl
i ehi—0 4 e=li-0 _ 20— (3.10)

We use the following MATLAB coding to verify (a) of Theorem for m = 15,
o=k =l=1,k=>=a=2,58=23,v(k, k) =e**%) and ~ is as in (3.10).
exp(3) = ((1./(3). A1). % (exp(5))) — symsum(((—13.05557647)./3. Ai). x (((exp(3 +

(i—1).%2))) +exp(l+ (i —1). %2) — (4. % (exp(2+ (i — 1). % 2)))),4,1,1).
3.3 Discrete delay heat equation for thin plate

Assume that v(ky, ko, k3) be the temperature of thin plate at real position (ky, ko)
and at time k3. As in the case of rod, the partial S-a delay heat equation for the

thin plate can be formulated as

A U(kl,k27k3> =7 A 'U(kl,k'Q,k'g —O'>, (311)
8(0,0,¢3) a(£,2))
where A = A + A 4+ A + A and o is a delay factor.

(e 2y) a(1,0,0)  «(—¢1,0,0) «@(0,62,0) «@(0,—¢2,0)
Theorem 3.3.1. Let m > 0 be integer and €3 > 0 such that v(ky, ko, ks — ml3) and
partial differences A v(ky, ko, k3) =  u (ki ko, k3 —0) are known functions.

a(£e1,2y) a1 2y)
Then, a solution v(ky, ke, k3) of (3.11)) satisfies the relation

’U(k’l, k’Q, kg) = ﬁmv(/ﬁ, kg, kg —m€3> + Z ﬁril (j:;/b )(k’l, kQ, kg — 0 — 7"63). (312)
r=1 aF2)

Proof. The proof of (3.12) is similar to Theorem [3.2.2] ]
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Consider the following notations which will be used in the subsequent theorems:
V(b2 £ la2), %) = v(ks £ 00, ko, ) +v(ky, kg £ 4o, %),
V(k2,3) £ l(2,3), %) = v(*, ko & la, k3) + v(*, ka, kg £ {3),
v(ky £ 00, %, %) = v(ky + 01, %, %) + vk — {1, %, %),

’U(*, *, ks Z|:€3) = U(*, *, ks — o +€3) + ’U(*7 *, ks — o — 63)

Theorem 3.3.2. Assume that v(ky, ko, k3) is a solution of equation (3.11)), and

v(kyrty, kotrly) exist. Then, we obtain four types of solutions of (3.11) as

(a). U(k)l, k?g, k’g) = ’U(k’l, k’g, k3 + m€3) Z [ (k’l j:fl, k?g,kg + (Z — ]_)Eg — O')

QlQ

L
ﬁm
+ U(k’l, k’g + 62, k’g + (Z - 1)€3 — O')} — 4&11(]{31, ]{32, ]{33 + (Z - 1)63 — O')], (313)

(b) 'U(kl, kQ, /{,'3) = ﬂm?]<k1, kg, kg — m€3> + Z 6(i_1)")/|:?)(]€1 + gl, kg, kg — 0 — Zgg)

i=1

U(lﬁ, ]{72 + gg, ]{73 — 0 — 283) — 4@1)(]{?1, ]{ZQ, ]{73 — 0 — 283)}, (314)

1 m
(C). U(k‘) = —mv(k1 — Z'fl,/{?g,kg +Z€3 + ZO’) Z ,yﬁ (/{31 — 7251, ]{32, k‘3 + (’L - 1)63 +Z0’)

Y
mo]
— Z ,.Yiflv(kl — (Z + 1)€1, k‘g, k’g + (Z — 1)53 + (Z — 1)0‘)
=1
mo]
— Z ,Yi—lv(kl — 7;61, k’g + 62, k’g + (Z - 1)€3 —+ (Z — 1)0')
=1
" da , . .
= Fv(lﬁ — il ko, ks 4+ (i — 1)ls + (i — 1)o),  (3.15)
=0
1 _ o U} . : .
(d) U(k) = fy_mv(kl + 261, /{72, kg + 10 + 263) — Z ¥U<k1 + 281, k2, kg + (Z — 1)63 + ZO’)
=1

— Z ?](kfl —f- (Z —I— 1)51, k’g, ]{33 + (Z — 1)63 + (l — 1)0')
i=1
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mo]
- Z 77:—1U<k1 + 2[1, ]i]g + 62, kg + (Z - 1)63 -+ (Z — 1)0')
=1

%
i—1

4
3 Sk il ka ks + (i — D)+ (i~ 1)o).  (3.16)
Proof. The proof is similar as Theorem |3.2.2 O]

In most general case, consider homogeneous diffusion medium in R3. Let
v(ky, ka2, ks, k4, ks) be the temperature, at position (kq, ko, k3), at time &, with density
(or pressure) ks and denote k = (ky,ko, ks, ks, k5). The partial S-a delay heat

equation for a homogenous medium is expressed as

A vk)=y A v(k-o), (3.17)
5(54155) a(iz(1,2,3))
where A =A+ A +A+ A + A+ A andois a delay factor.

a(F(123) o)  al=l1) aflz) o(—l2) alls) of(-—ts)
As in the previous cases, equation (3.17)) has four types of solutions as given below

(a). v(k) = Bimv(k —mlys) — é% v(k 4+ (£61,0,0,(i — 1)ly — 0, (i — 1)l5 — 0)
+u(k + (0,4+65,0,(i — 1)ly — 0, (i — 1)l5 — 0))

Sk 4 (0,0,40, (i — 1)0s — 0, (i — 1)ls — 7))
— 6aw(k + (0,0,0, (i — 1)ly — o), (i — 1)ls — o) |, (3.18)

(b). v(k) = 8™v(k — mlys)

+ 2 By vk + (£6,0,0, —ily — 0, —ils — o))
=1
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+U(l€+(0, :tgg, 0, —1[4—0'7 —2£5—0'))+U(k+(0, 0, :tfg, —i€4—0, —155—0'»

— 6aw(k + (0,0,0, — — ily, —o — i£5))] , (3.19)
1
(c). v(k) = —v(k+ (—ml1,0,0,mly + mo, mls + mo))

q/m

_3 %wﬂ - (=ilh,0,0, (i — 1)y + io, (i — 1)ls +i0)
i=1
m o1

= 35 ok (<4 10,00, (1= Dba-+ (=)o (i = Vs + (1= o)
=1

m

-5 %v(k‘ b (mily, 40,0, (i — s + (i — Do, (i — 1)l + (i — 1)0))

1

- i %v(/ﬂ + (—ily,0, %3, (i — 1)y + (i — 1)o, (i — 1)ls + (i — 10)))
-2 %v(k + (=i, 0,0, (i — 1)l + (i — Vo, (i — 1)ls) + (i — 1)o),  (3.20)
(d). v(k) = Vimv(k: + (¢1,0,0,mly + mo, mls + mo))
- i év(k + (il1,0,0, (i — 1)ly + io, (i — 1)ls + ic))
- i Willv(k +((i+1)61,0,0, (i + 1)y + (i = D)o, (i = 1)l + (i — 1)0))
- i %’U(k + (i1, £05,0, (0 — 1)y + (i — 1)o, (i — 1)l5 + (1 — 1)0))
- fjl vil_lu(/f (i1, 0,45, (i = D)o + (i — 1)0s, (i — 1)0)

- Zm: %v(k + (i01,0,0,(i — Dy + (i — Vo, (i — 1)y + (i — 1)a)).  (3.21)

3.4 Discrete delay g-heat equation of a long rod

Consider a long rod and assuming v(ky, k) be the temperature at the position k;

and its time ko of a rod. Let v be the positive dissemination rate constant of rod.
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By Fourier’s cooling law, discrete a-3 delay ¢-heat equation of rod is

v(k1, k2q2) — Bu(k, k2) = W[U(];, ]?) v(k1, k2 ) +v(kiq, — k2 ) — av(ki, %)} (3.22)

Then the discrete heat equation (3.22) with delay can be expressed as

2
A vk k) =y A (kl,;

). (3.23)
B(1,g2%) alqg®,1)

Here, we analyze the possible solutions of the ¢g-heat equation ({3.23)).

Theorem 3.4.1. Let m > 0 be integer, and gz > 0 is real such that v(ky, f—%) and
2

A vk, 2)= u (ki,%) are given. Then (3.23) has a summation solution as
oa(qit,l) a(Qli71)
(ki ka) = o™ v (ki, kj) —l—vio/ u (ki ’f? ). (3.24)
43 — aleg)) 420
: ko ka . :
Proof. Taking A wv(k;,—)= wu (ky,—) in (3.23)) gives
O{(qli,l) o O‘(Qit7 ) g
U(kl, kg) =7 A_l u (k’l, @) (325)
B(L,a2) a(gif 1) g

The proof follows by applying inverse principle on (|3.25]). O

Theorem 3.4.2. When 3 > 0, m is a positive integer and by denoting v(kiqi,*) =

v(kiqq, *) + v(%, %) and v(*, kaqa™) = v(*, kaga) + v(*, ’;—f), we get the following:

m k’ j ]{7 i—1
kl,kQQQ Z%[ kl 1i, 26(]72 )-20&U(l€1, 23_2 )i|, (326)

=1

(a). v(ky, k) = ﬁl

k — k k
(b) (kla kg) 6m kl, 22 +Zﬂz 1 |: k’lql , q20') —20(1)(]{?1, 1_20')]’ (327)

2 ds
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n k .
(0l k) = o kaa'o™) = 35 Do o)
1 i=1"7 1
m 1 k i 2 m 200 k1 io1 i
_ ; i1 (qwll s kags 1 1) _ ; Vi—lv<q_§’ kg 1, 1)’ (3.28)
1 m 6 1
(d). v(ki, ko) = Wv(quT, koghta™) — > fy_ (qula kadl )
=1
moo1 1 i ™90 —
— Z ,yi—lv(qul qu ) - Z 77} 1 (k}qu qu ) (329)
=1 i=1

Proof. (a). From ([3.23]), we have
1 ¥ ko ko
U(kl, ]{72) = Ev(k:l, k2q2) — B |:’U(k?1qit7 ;) - 20[1)(]{71, ;)] . (330)

Replacing ky by koq, kag3, ....., kagi in (3.30)), we get the result (3.26)).

(b). From ({3.23)), we get

ko ko ko
v(ky, ko) = Pk, —) — [vk £ =) —2av(k, ] 3.31
(1 2) 5(1({2) Y (1611 q2g) (quU) ( )
ko ko 2
By changing ks by —, —, ..., — repeatedly, we get the result (3.27]).
43 5"
. 1 Kk B ki k1 k1
¢). (3.23) yields v(kq, ko)=—v(—, kaqoo) — —v(—, 0ks) — v ko) +2av(—, k
(c) y (]: ;) ~ ]iql 2020) ~ ((h 2) (q1 2) (q1 2).
By replacing k; by 1, ;,..., _7711 and ky by koqoo, kaqao?, ..., kaqy'c™ repeatedly in
1 a4

the above relation, we obtain ((3.28)).

(d). The proof of (3.29) follows by replacing ki by kiqi, k1q3, ..., ki¢]* ko by

koqoo, koqic?, ..., koqd'a™ repeatedly in ([3.23) which is expressed as

1
U(kl, kQ)Z;'U(IﬁQD szQU) - gv(kﬂh, Ukz) - v(k1q12, kz) + 204@(/61%, k2)- O

Following example is an illustration for (a) of Theorem [3.4.2]
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Example 3.4.3. Suppose that v(ki, ko) = kiks is a exact solution of ({3.23)),

U(k’1, ]{32) = ’7[( Al) kﬁlk‘z + ( A : k’lkg] yields k’1k’2Q2 — 5k1k’2 = ’Y[kﬁlqlk’g + %]{32 - 2]{31]62]
q1, i,l
@ — B

Q1 1 2a°

o qo o
For numerical verification, we give the MATLAB coding for (a) by taking

Cancelling kiks on the both sides derives v =

ki=q =4k =¢=50=0=3,a=2 m=20,
4.%5=((1./(3). A20). % (20. % (5. A 20))) — symsum((24./(3. Ai)). % ((16. * (5. * (5. A

(i = 1)))-/3) + (1 # (5. % (5. A (i — 1)))./3) — (4. % (20. (5. A (i — 1))./3)))), 4, 1, 20).

3.5 Discrete delay g-heat equation for thin plate

Let v(ky, ko, k3) be the temperature of a thin plate at position (ki,k2) and
time k3. The proportional amount of heat flows from left to right at the position
k= (ki,koyk3) is A wv(k), right to left is A wv(k), top to bottom is

(51D (a1,1,1)

A v(k) and bottom to topis A wv(k). By Fourier law of cooling and denoting
(1,g2,1) (lvévl)

A = A + A + A + A the heat equation for the plate is
(@e2)™ (@bl (L1 (hal) (1,50

k
A vk ke ks) =~ A u(kl,kz,;?’). (3.32)

B(1,1,q3) alqr,g2)®

Theorem 3.5.1. Let m > 0 and g3 > 0 such that v(ky, ko, %2) and the partial

as"
differences A U(k’l,k‘z,%) = u (kl,k‘z,%) are known, then we have
a(gi 1) (ai1)
m ks — ks
(k) = a™v(ky by, =) 7> u (ky ks, —). (3.33)
3 r—1 Ct(qit,l) g 3
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Proof. Taking A v(%)= u (%) in (3.32), we arrive at
a(gt 1) agf.1)
1 k
vk) =~y A1 w (—) (3.34)
B(1,1,q3) a(qf[,l) g
-1
By using the inverse principle of A on (3.34), we obtain (3.33). O
B(g3)
Consider the following notation which will be used in Theorem [3.5.2
U(k(1,2)Q(1,2)7 *)i = U(k1Q1i7 ko, x) + v(ky, kago™, *) also
U(’<¢(2,3)¢1(2,3), *)i = U(*7 k’zQQi, k?3) + U(*, ko, st:si)-
Theorem 3.5.2. Assuming (3.32)), then we have the following identities
_ 1 my s Fagy !
(a). vk, ko, k3) = —mv(k‘lyk/‘mk:a% ) - —[ (lﬁql s Koy —— )
B =0 o
k i—1 k i—1
U(k)l, kgqg:, 343 ) —4av (k’l, kg, 343 )}, (335)
o o
_ Am ks N i1 + k3
(b)- U(klak%k:’)) = U(kl,/@, —m) + Zﬁ V[U(klch koo, T)
ds3 i=1 430
o(kn ko T2 — daww(ky, ko, 2] (3.36)
1, 2 2’Q§O' 1 27(]%0' ) .
1 k?l m B kl 1
c). wv(ky, ko, ks) = ko, ksgy'o ko, kaqi to?
<) (123) 7m<Q1 20 )1—2317 (Q123 )
mo] k k1
-3 i_l[ (ks o) 0 ko o™ o)
i=17 qq 71
4
- kQ,kgql o), (3.37)

1
(d).  v(ky, ko, k3) = V—mv(qu;n, ko, ksqg'o™) — v(k1qi, ko, kags o)

INNgE

B
7
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mo1
= [U(qul ko, ksgy o) + o (kagl, kagy s ksgy ot 1)]
i=1
" Ao
= > yo(kadi b ksgs o). (3.38)
i=1 7
Proof. The proof and verification are as similar as in the case of long rod. O

3.6 Discrete delay g-heat equation of medium

By the Fourier law of cooling, the heat equation for medium in R is

k
A vk)=v A v(—), (3.39)
B(q4,95) a(q1,q2,93)F N0
where A = A+ A+A+ A+ A+ A and k= (ki, kg, ks, kg, ks).
(q1,92,93)*  (q1) (i) (g2) (é) (g3) (%)
Theorem 3.6.1. Assume that the function A v(£) = u (%) is known.
a(q1q2,q3)* (q1,92,q3)*

Then, the solution v(k) of the heat equation (3.39) satisfies the relation

k4 k k5 )
v(k kv, ko, ks, ——, + k1, ko, ks, . (3.40
() (1 2 4™ ) IYZ Q1QQQ3 (1 ? 3(]4TO' qs"o ( )
Proof. Taking A v(®) =« (&) in (3.39), we get
alqra2as)® o(q1,q2,q3)% 7

o) =7 A (5) (3.41)

B(q4,q5) a(q1,q2,3)F \ O

Then using the inverse principle in (3.41]), we get (3.40)). O

In the below theorem, we use the following notations:
U(k(1,2,3)Q(i1,273)7 *, *) = U(k1q17 k?a k37 *, *) + U(%? k?a k?)a *, *)

U(kla kQQ% kg, *, *) + U(kla ];_37 k37 *, *)
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U(kla k27 k3Q37 *, *) + U(kla k27 ];_27 *, *)

U(*v k(2,3)Q(i273)7 *, *) = U(*v k’2(12> k37 *, *) + U( ’ go 7k37 *, *)

k
U(*: k27 k3Q37 *, *) + U(*; k27 _37 *, *)
qs

Theorem 3.6.2. If v(k) is a solution of the equation (3.39) and m > 0 and

k = (ki, ko, ks, ky, ks), then the following relations are equivalent:

o

m i-1 k
(@) 0k ki) = ok, kg™ ksas™) — 35 - [o(kat, 0 ot

9

o o o

1—1 i—1 i—1 i—1 -1
H(kqg,’%? ’k"’%)jtv(kqf,k‘*? Fs®s ) 6o (k, kudi ksds =), (342)

(0). wlh k ks) = 8o (k. &5, 45) + 35 6 (o, 21, 52

50
+ ki ks v ke ks ky ks ]
+U(kq2’qf10’qga> +U(k'q;37qio_7qéo_) 6067}( ’qu’ng') 5 (343)
(C)' U(k7k47k5) - %U<%ak4qzlam,k5qgndm) - ;’VB’ ( ]{?4qz 1 l k5q2 1 Z)
- 3 ,yil—l [U((ﬁ%’lﬁqz ot k:ql lot= 1)+U(kq2 qu lgi-t qu Lgi= 1)i|
=1

6a
Z,164(]4 o=tk qZ lyi= 1), (3.44)

(@)- ok, ks, ks) = o (kal", kagf'o™, ksgg'o™) = 32 vo(kah, kadi™' 0", ks o)
— X 5 [ (kar™ kagi™ o ksgs o' h) o (kay af, kagy o Rsgs T o 1)]

m

6
_Zwal v(kay, kagy o ksgs o). (3.45)

=1

Proof. The proof and verification are as similar as Theorem |3.5.2 O
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Since heat flow is not instantaneous, the time needed to pass the heat energy
from one point to another point is taken into account. Hence, we have introduced
the delay factor in the heat equation model. Here, we used ¢-heat equation since
logarithmic functions can be considered as solutions of g-heat equations. This is one

of the significances of our book.



Chapter 4

Discrete Partial g-Heat Equation

Models

4.1 Introduction

This chapter focuses on the formulation and corresponding solutions of the discrete
partial g-heat equation as well as the discrete partial g-heat equation models with
several variables. Being an application of difference operator, relevant formulae for
finite and infinite series on polynomial and rational functions in number theory
have been derived. This complex terrain of study finds its application in heat
propagation within the given medium based on the Fourier law of conduction. It

enables the optimal choice of material and gives us the knowledge about the nature

43
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of propagation of heat. The results are verified by MATLAB to validate the findings.

4.2 Preliminaries

Consider n-variable k = (ky, ..., k,,), shift value ¢ = (¢4, ...,¢,) and real valued
function u(k) defined on R". The difference operator with shift value ¢ is defined as

Au(k) =u(k 4+ ¢) — u(k) and its inverse defined in ([1.3]) can be expressed as
¢

U = A ulR) e = 0(k) = 0k = m). (1)

Example 4.2.1. [f u(k) = k‘lkg, { = (61,62), then Au(k) = (fgkg + glkg +€2€2)
l

—1 —1
gz’ves %(fgkg + éle —|—£1€2) == k‘lk’g. ]fKQ = 0, then %(ﬁlkg) == /{31]{32.

Lemma 4.2.2. If ESu(k) = u(ki, ko, ... ki + Ciy .o kn) for i = 1,2,...,n, then

1+ E‘= A, where E' = [] EX.
() i=1

Proof. Au(k) = u(ky + €1, ks + la, ...k + £,) — u(k) = Eu(k) — u(k),
)

which gives 1 + A = E*. O]
©
Corollary 4.2.3. If B = BT B2 E' | then A = (E' — 1)" = 3 (—=1)"nC, E".
4 r=0

Example 4.2.4. From example the relation (1.4) directly yields the relation

kll{?Q — (l{?lmél)(kg — mf2> = 2{62(]{31 — T€1> + £1<k52 — 7“62)} + mﬁlﬁg.

r=1
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Theorem 4.2.5. [71](Product Formula) If u(k) and v(k) are two real valued
functions of n variables k = (ki, ks, ....;k,) and € = (1,0, ..,0,) is n-shift value,
-1

tMné{M@M@]:uMﬂév%)‘%{Awk+@A ()}

Example 4.2.6. Taking u(k) = kiky and v(k) = a**1%%2) in Theorem gives

-1 -1 —1 —1
s(k1+k2)] — s(k1+ka) _ s(k1+ka+41+42)

4.3 Finite series formula on rational functions

In this section, we obtain finite series formula by equating closed and summation
form solutions of equation for a given rational function u(k). Here, we use the
polynomial factorial k:( =k(k—0)(k—2()....k — (n — 1)), n is a positive integer.
Recall the difference operator defined by % u(k) = u(ky + 1, ko + Loy -+ kp+0,) —
u(ky, ko, -+ ,k,). This is called partial difference operator if n > 2 and atleast one

¢; is zero but not all ¢;.

Lemma 4.3.1. If { = (1,05) # 0 and k1, ks # 0 are variables then we have

1 _Al Orko + Uoky + €145
(ks + 01)5) (ks + o))

1 ks + Lok
Proof. The proof follows from A CLERS EQ - £1£2(2)
T knks (k1 +€1) (/f2 la)y,

Example 4.3.2. If { = (0,05,03) # 0 and ———— ’ k 7& 0, (1.3) gives
1k

and (T4). 0

A I 1 1 [k‘gEg + k:3€2 + (o0s] n
0 kikoks  ky(ky + lo) (ks + £3) k1k2k3 ki (ko + 62) (k:g + 53)(2)
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l

i k2£3+k3£2+£zeg -1
kr(ka + 00) 2 (ks + 03)D | Kakaks

Theorem 4.3.3. If k; and ko are not integer multiple of ¢1 and ly respectively, then

m €1<l€2 — 7”22) + gz(k'l — 7’€1> + €1£2 . 1 _ 1
(k1 + 01 — rfl)gf)(k‘g + by — réz)g) (k1 —mly)(ky —mls)  kiky

Proof. The proof follows from Lemma and ([1.4)). O

Remark 4.3.4. Asm — oo, in Theorem[4.5.3, we arrive as the formula of backward

— - —1
infinite series Z (kg —1ly) + la(ky — rly) + 5251 _ ‘
(kl +0 =1l )51 (k‘g + 0y — 7"52) kiks

Lemma 4.3.5. Let Ufl)til (kg)zg # 0 and ¢ = (01,03). The inverse difference of

rational functions of polynomial factorial of two variables is given by
-1 . _Al 41(/{?2) + Eg(kl)
Qk@)k(?)_g k 5(3)l€ 6(3)'
(k1)p, (K2)y, (k1 + 1)) (ko + £2),,

-1
Proof. By 1) and applying A on T completes the proof. n
C 2k, (k2)7,

Theorem 4.3.6. If the denominators are non zero, and m > 0 is integer, then
m fl(kg — 1"62) =+ €2(k1 — 7’61) . 1 B 1
(ky+ 0 —r0) D (ko + o —702)2 | 20k —me) (ke — me,)s) 20k1)5 (k)2

Proof. The proof follows by (L.4) and Lemma [4.3.5] O

Remark 4.3.7. Asm — oo, infinite series backward formula in polynomial factorial

£1<k2 — 7’62) + 62(1{}1 - 7’61) . —1
s Z - @ (1@
(k1 + €1 — 7’51)& (kg + 0y — 7“52)@2 2(k1)y, (ka)y,

Lemma 4.3.8. If ¢ = (0,03,03), k1 # 0, then the inverse difference of rational

functions of three variables is given by

1 -1 l3koy + ggk'g + Uyl
— A
kykoks k1 (ko + 52) (k:’) + 53)
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—1
Proof. The proof follows by taking A on both sides. O]
¢

Theorem 4.3.9. If ko, ks are not integer multiple of {5, U3, ks respectively, then

m £3<l{32 - 7“52) + fg(k?g - 7’53) + ggfg . 1 _ 1
(ko + o — rﬁz)g)(kg + 03 — TEB)Z) ki(ky —mly) (ks —mils)  kikoks

r=1

Proof. Lemma and (|1.4) yield the finite summation formula. O

4.4 Infinite series formula on rational functions

In this section, we derive the forward infinite series formula for certain class of

rational functions. Also we use infinite series solution in heat equation model.

Lemma 4.4.1. The infinite inverse principle of u(k) with respect to A is given by
¢

o) -1 o] —1
Sulk+1l)=—A u(k:)‘k if the series is convergent i.e., lim A u(k +mf) = 0.
r=0 l m—oo ¢

m—o0 ¢

A{fu(k+re)}:u(k). .

l r=0

-1
Proof. The proof follows from lim A u(k + mf) =0, 1} and

Theorem 4.4.2. Assume that (1,05 > 0 and kq, ko are not an integer multiple of {1

and ly respectively. Then an infinite series and closed form solution of the equation

S fl(k‘g +T€2) —f—ﬁg(lﬁ —i-’l"fl) + l10y B 1
(ki + 00+ 700)5 (ko 4 Lo+ 15)

" kiky

r=0

Proof. Lemma {4.4.1] and 4.3.1| complete the proof by taking u(k) = v O
1k2

The following theorem is the forward infinite series formula of reciprocal of product

of polynomial factorials.
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Theorem 4.4.3. If ki is not a multiple of {1, ko is not a multiple of {5 then

o0 01 (ko + 1) + Lo(ky + 1ly) B 1
(b + b+ 100)5) (hy + 6 + 7)) 2(ky)y (k2) ()

r=0

Proof. Lemmas [£.4.1] and [£.3.5] generate the forward infinite series formula. O

Theoremsld.4.2land[4.4.3] are the infinite series formula for certain class of rational

functions.

4.5 Formation of partial g-heat equation

For ¢ = (q1, q2,..-, qn), the generalized g-difference operator is defined as

Av(k) =v(kiqr, kaqo, ..., kngn) — v(k1, ko, ...y kn),qi >0, (4.2)

q

where k = (ky, ko, ..., k) € R", and v(k) : R* — R is a real valued function. The
operator A becomes partial ¢-difference operator if some ¢; = 1.
q
Consider the notations in section 2.5. By Newton cooling law, the discrete

g-heat equation with rate constants o and [ is

A U(kl,k2>:a A U(kl,k2>+/6(A U(kl,k2)7 (43)

(1,q2) (g7 h1) q1,1)

where the operators A, A and A are as given in 1) having n = 2.

(La2) (¢7%,1) (q1,1)

Here, we extend the theory developed in section 2.5 with two rate constants.
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4.5.1 Solution of g-heat equation of long rod

In this section, we derive inverse principle for g-partial difference operator and
provide several kinds of solution of partial g-heat equation (4.3]). Here, we assume

that ¢; # 0, k1, k2 € (—o0,00) and m is a positive integer.

Theorem 4.5.1. If A w(ki,k2) = u (ki,k2) and A v(ky, k2) = u(ky, k2) are
q; q1

(ar D) (q1,1)

known functions, then the q-heat equation (4.3) has a numerical solution of the form

v(k1, ko) — v(ki, kagy ™) = Z {04 u (k1, kogy ") + B u (ki k?2CJ2_T)} ~ (4.4)
a1

r=1 a0

Proof. The proof follows from (4.3) and applying the inverse principle ({1.4)). ]

Theorem 4.5.2. If a = 3, then v(ky, ko) of (4.3) satisfies the following relations:

(1) v(ky, ko) = k1, k2q3?)

1= 2ay

" (6%
=3 gy (ki ki) ol kg ™) (45)

r=1

(ir) v(ky, ko) = {a _(10[_)(?&_) 30) {Til %U(hﬁ_r, k2q2)

+T%2 %U(hg%r, ko) + %v(/ﬁqlm, k:Q)} L (6)

and (1) v(ky, kg) = i _(105501_) - {é %U<qu;—17 k:QQ2>

- Z %U <k1q’1"’2, kz) + é;i)—;nj;v (qu;n> k2>} : (4.7)
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Proof. Since a = f3, from (4.3)), we obtain

o) o)
vk, ke) = 11— 2@“(/51, k2g2) — 1 QaU(quﬁ’ ka) — 1_ 2&U<k1Q1a k2).  (4.8)

(i) Replacing ko by kogo in and continuing the same process, we get (4.5),

(ii) replacing ki by kig;* in (4.8)), yields and

(iii) replacing ky by kiqy in (4.8)), gives (4.7)). ]
(g2 — 1) :
Remark 4.5.3. If a = ﬁ, ¢ # 1, then v(ky, ko) = kiks is a closed form
— a1

solution of the q-heat equation (4.3). Also, v(ky, ko) = kiks satisfies equations (4.5)
to (E3).

Example 4.5.4. For (ky, ky) € R%, if 1 # 2a, then v(ky, ko) = kiky in ([£.5) gives

m

kikags" o r—1_—1 r—1
ke = a2 (T gay (bt Rk ) (49)

For numerical verification of [.9), when ki =2, ks =3, 1 =2 ¢ =4, « =6 and
m = 50 the MATLAB coding is gien below:

6 = (6.%(4.A50))./((1 =2.%(6)). A (50)) — symsum(((6)./(1 —2.%(6)). Ar).* (((6.
(4. N (r—1)))./2) + (12. % (4. A (r — 1)))), 7, 1,50).

Theorem 4.5.5. If § = —a, then v(ky, ko) of (4.3) satisfies

m

v(k1, k2) = v(ky, kagy') + Oéz (v(k1g1, kogh) — v(kigy ', kagh)) - (4.10)

r=0

Proof. The proof follows from (4.3), 5 = —« and replacing ky by kage repeatedly in

U(k’l, ]{32) = U(k’l, ]CQ(]Q) — {U(%, kg) — ’U(l{flql, ]{32)} . (411)
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]

Example 4.5.6. The function v(ky,ke) = log(kiks) is a solution of (4.3)) when

1
o= _Q?gg% 1 £ 1,20 #0 and f = —a. Taking v(ky, ko) = log(k1ks) in (4.10)),
0g 41

m

log(kiks) = log(kikagy") + > _ (log(k1qikagh) — log(kikaghar ")) - (4.12)

r=0

The formula (4.12)) is verified by taking k1 = 2, ks =3, ¢t = 2, @@ = 4, a = —1,
m = 150 and the MATLAB coding is given by
log(6) = log(6. % (4. A (150))) — symsum(log(12. * (4. A (r —1))) — log(3. % (4. A (r —

1))),r,1,150).

4.5.2 Solution of g-heat equation of thin plate

As in the case of rod, if v(ky, ko, k3) is the temperature at the position (ki, k2) at

time k3, then the ¢-heat equation of thin plate takes the form

A U(k’l,k’Q,k’g) = A U(k’l,k’Q,k’g) —Fﬁ A U(k’l,k’Q,k’g). (413)

(1,1,g3) (a7 a5 1) (q1,92,1)

Theorem 4.5.7. When a = 3, v(ky, ko, k3) of (4.13) satisfies

. 1
(i). v(ki, ko, k3) = mv(lﬁ,kj,]ﬁ,q%ﬂ)
- &
-2 1= 2a) (v(krar ", kagy ™, kags ™) + v(kiqy, kaga, ksgs ™) - (4.14)
r=1

(ii). v(ky, ko, ks) = (1-2a) { mo(—1)lgr-

kil koal "k
(1 —a)(1 —3a) q; (1—2a) vk kago ™" aas)

m <_1)TO{T - - (_1)mam . .
+r:12r:7é? mv(kﬂ(h akQQQ 7k3) + m@(k’lql ,k2q2 ’k;3) . (415)
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(ZZZ) U(k’l, k’Q, k’g) =

(1 —20)° e A S P R
T e PP LS

i r—2 g r—2 (=1)™ma™ m g m
_'_lemg mv<kIQ1 7]€2QQ 7k3) + mv(qul ,k’qu ,/{73) . (416)

Proof. From (4.13) and rearranging the terms, we obtain

U(kla k?a k3) =

v(k1, ko, k3qs) — [v(kigi " kagy 'y ks) + v(kiqu, kago, k3)].

«Q
1 -2« 1 -2«

(4.17)
Replacing ks by ksqs repeatedly, ki by k1g; ! and ky by kogy ! and ki by k1q; and ks

by kago in (4.17)) yields (i),(ii) and (iii). O

Remark 4.5.8. Taking = —« in (4.13]) yields

ki k
A v(ky, ke, ks) = « {v(—l, —2, k3) — v(kiqr, k2ge, ks)} ) (4.18)
(1,1,g3) q1 42

and hence we arrive

vk, ko, ks) = v(ky, ko, ksgd") + o) (U(klm,kz% kagy ) — U(Sl, @,

faai ) - (4.19)
1 42

r=1

1
Example 4.5.9. If k1 #0, ¢; #0,1, a = —210& and B = —a, from (4.19),
08 4192

10g k1k2k3 = IOg klk}gkgqgn + o Z (]Og k1q1k2q2k3q§—1 —lo

r=1

o klk‘zk:aqg_l)
4142 ’

s a solution of discrete q-heat equation (4.13]).

4.5.3 Solution of g-heat equation for medium

A linear generalized partial difference equation is of the form

A (k) = u(h) (4.20)
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where A is as given in 1) ¢; = 1 for some i and u(k) : R" — R is a given function.
(@)

A function v(k) : R™ — R satisfying (4.20) is called a solution of the equation (4.20)).

The equation (4.20) has a numerical solution of the form,

k "k
v(k) —v<q—m> = Zu(;), (4.21)

r=1

where — = —1, —2, ..., —), m is any positive integer. Relation (4.21)) is the basic
q" a" et G

inverse principle with respect to A ([8, 27, 31]).
(@)

For example, the basic inverse principle with respect to A is given by

(17Q2)
ks . ks
U(k’l, ]{2) - 'U(kl, q—m) = Z u k‘l, p s (422)
2 2

r=1
where v(ky, ko) = (%_1) u(k1, ko). From the theory of generalized difference equation,
542

we have two types of solutions to (4.20]), namely closed form and summation form
solutions [8, 27, 31]. Similarly, the partial difference equation has two types
of solutions.

Consider the notations in heat flows. The proportional amount of heat flows

from left to right at (ki, ks, ks, k4, ks) is A v(k), right to left is A wv(k), top to

(%7171) (ql’lzl)
bottom is A w(k), bottom to top is A w(k), rear to back is A w(k), back
(1,42,1) (1,%,1) (1,1,q3)
torear is A w(k). By Fourier law of cooling, the heat equation for medium in
(L)
R3 is
A ok)=v A k), (4.23)
(q4,95) (q(ji,2,3))

where A = A+ A+A+A+A+ A and k= (ki, ko, ks, kg, ks).

@123) @ (L) @ (L) @ (D)
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ky k
Theorem 4.5.10. Assume that v(kl,kg,kg,—4, —5) and the partial differences
Q™ g™
A v(k) = w (k) are known functions. Then, the partial q-heat equation
(q(il’g,g)) (q(ji,2,3))
(4.23) has a solution of the form
ky ks - ky ks
v(k) = k17k27k3a_7_ +7 u kak27k37_7_' 4.24
(k) = of ) I kb8 (02)
Proof. Taking A wv(k)= wu (k)in (4.23), we get
(qag,g)) (q(ji,Q,s))
v(k) =7y A w (k). (4.25)
(Q4,Q5) (qzﬁygﬁ))
The proof follows by applying inverse principle (4.22) in (4.25]). H

In the Theorem we use the following notations:
k
U<k(1,2,3) (Q(iLQ’g))a *, *) = U(qula k27 k37 *, *) + U(q—l, k27 k37 *, *)
1
k
+ U(kla k2Q27 k?)a *, *) + U(kla q_27 k37 *, *)
2

k
+ U(kla k?a k3q3a *, *) + U(kla k?a _3a *, *)

qs
k
U(*J k(2,3),*,*(*7 Q(i273))7 *, *) = U(*; k2927 k37 *, *) + U(*J q_27 k37 *, *)
2
k
+ ’U(*v k?; k‘3¢]3, *, *) + ’U(*a k?v _37 *, *)
qs

Theorem 4.5.11. If v(k) is a solution of the equation (4.23) and m is a positive

integer, then the following relations are equivalent:

ky k
(a). v(k) = (1 = 69)™v(ky, ks, k3, —, —)
g4 g5
m—1 . N k4 kg,
+ 2 (1 =69)" (k29 (91 23) o1y o) | (4.26)
r=0 i qs5
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1
(b). v(k) (1= 6y)" (K1, ko, k3, kaqa™, ksqs™)
CN (o€ o) ki, gy 4.7
Z (1—67) v (172»3)(q(1,2,3))7 1" 595 ) ; (4.27)
r=1
1 k
(c). v(k) = —v(—, ka, ks, kaga™, ksgs™)—
g Q™
16y Kk mol
Z - ! (—1 ke, kg, kaqd" ™ ksgs D) v ( ) k23) (53)s kaaa”, Ksgs” ),
r=1 v q r=0 v
(4.28)
1
(d). v(k) = ,Y—mv(kﬂhm, ko, k3, kaqa™, ksqs™)
mo1—6
- o Vv(qu{, ka, k3, kaqa" Y ksgs V)
r=1
m—1 1
-y = ol vk " k) (af.5))s kags Ksgs"). (4.29)
r=0

Proof. From (4.23)) and (|1.3]), we arrive

(1) U(k) = (]_ — 6’}/)?} (k’l,k‘g,kg,, k47 k5) [ (k(123)(Q(123)>

qs G5

ky ks
44 ’ g5

(ii). v(k) =

(1 __67)1)(]{17 kZ) k37 k‘4Q4, k5Q5) - ﬁ[ (k(l 23)((] 1,2,3) ) k‘4’ ks)]

1 k 1—6 k
(iii). v(k) = = <q1 g, ki, agu, ksgs) — —— <q1
kq

Y
Kk
_ <q k27k37k4,]€5> —U(q— ]{Z23( 23)) ]{Z4,/{?5) and
1

k27 k37 k47 kB)

1 —6v

. 1
(IV)- U(k) = ;U(h%,kz,k& kaqu, k5€l5) - U<kIQI7 ko, k3, k4, k’5)

- U(k1q127 kQ; k37 k47 k5) - U(qula k(2,3) (Q(:Eyg))a k4a k5)

Now the proof of (a), (b), (¢) and (d) follows by replacing

ky k k ks k k
kg and ks by —, —5, ..., = and —, — ... = in (i)
qs qj 4y g5 g5 ds

ky and ks by kiqu, kaq?, ..., kaq?® and ksqs, ksq?, ..., ksq? in (ii)
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ky k k e
k1,ks and ks by q—, —;, ey —nll, kiqa, kaq?, ..., kaq and ksqs, ksqz, ..., ksq? in (iii)
4 91 1

klv k4 and k5 by quh le%? ) k1q71n7 k4Q47 k4qZ7 B3 k,4q£n and k5Q5, k5q52)7 B k5qgn in <1V)

respectively. O

Example 4.5.12. The following example shows that the diffusion of medium in
three dimensional system can be identified if the solution v(ky, ks, ks, ks, ks) of (4.23)

is known and vice versa. Suppose that v(ky, ks, ks, ky, ks) = kikoksksks is a closed

form solution of 4.23), then we have A kikoksksks =~

(q4,95)

A k’lk‘2k3k4k5] ;

+
(q(1’273))

. . 1 1 1
which, yields kyksksksks(qaqs — 1) = v [k1kokskaks (g1 + o +q2 + “ +q3 + P 6)].
1 2 3

Cancelling kikokskyks on both sides gives

qags — 1

1 1 1 )
Gi+—+@+—+¢g+——06
q1 q2 q3

v = (4.30)

For numerical verification, if we assume that k1 = 1,ke = 2, k3 = 3,ky = 4, k5 = 5,

q1 = 1,(]2 = 2,(]3 = 3,(]4 = 4, s = 5,m = 2 then ’U(k)l, kg,k37k4,k5) = 120,

4x5—1
7= 1 d 1 1 , LHS and RHS of (a) of Theorem |4.5.11] is given
1+I+2+§+3+§—6

below respectively.

120 = 1122.964462 + 487.0909103 — 1490.055371 = 120 = 120.
LHS and RHS of (b), (c), (d) of Theorem are as similar as (a).
For matlab coding, if we assume that ki = 1,ky =2, ks =3, ks =4,ks =5,¢1 = 1,
Go=2,q3=3,q2=4,q5 = 5,m =5 then we have
L2, %3.%4. %5 = (1 —6.%(10.36363636)). A (5). * (6. % (4./((4). A5)). * (5./((5). A

5))) + symsum((10.36363636).% (1 —6.%(10.36363636)). Ar.* ((6.%(4./(4.A(r+1))).x
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(5./(5.A(r+1))+(6.%x (4. /(4. A(r+1)).%(5./(5.A(r+1)))) + (12.% (4. /(4. A (r +
D))o (5. /(5. A(r+1)))) + (3% (4. /(4. A (r+1))). % (5. /(5. A(r+1)))) + (185 (4. /(4. A
(r+1).%«(5./G.A(r+1)+ (2. %4 /4. N (r+1))).x(5./(5. AN(r+1))))),r,0,4)

4.6 Logarithmic solutions in heat flows

To analyze the logarithmic solution of the g-heat equation (4.3), the following

. . . 1 1 .
diagrams are obtained by taking ¢; = 10 Q2 = T500° f=—-aand m=1in (4.12

and boundary values v(ky,1)=log(q1 + 1), v(1,k2) =0, v(41,ks) = 3.6889.

px. A1 14 OE Q@ 87 DB 07 Tl
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From the diagram, we find that heat flows after certain stage is constant. Through

our research, the saturated point can be identified easily using MATLAB.
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4.7 Partial alpha-beta heat equation models

Let 5 # 0, £ = (l1,09,03,....0,) # 0 and v(k) be a real valued function of n

variables k = (ky, k2, k3, ..., k,). The [-difference operator on v(k) is defined by

B%)U(k) = U(kl + gl, kg + 62, ey kn + €n> - Bﬂ(kl, kg, ceey kn) (431)

This operator A becomes partial g-difference operator if some ¢; = 0. For a given
B(£)

function u(k), a first order linear generalized partial S-difference equation is,

A v(k) = u(k), (4.32)
B(¢)

has a numerical solution of the form

m

o(k) = Bmu(k —me) = 37 B u(k — rf) = 5‘%; wk)|E_ (4.33)

r=1

where k —rl = (ky —rly, ko — rly, ..., ky — rly,), m is any positive integer. Relation

4.33) is the basic inverse principle with respect to A [8]. Here, we apply the
B()

alpha-beta partial difference equation A v(k) =+ A wv(k) in heat flows.
B(e) a(£L)

4.7.1 Alpha-beta heat equation of long rod

With the heat equation parameters from (4.31)) and Newton law of cooling, the

discrete heat equation of rod is taken by

A U(k‘l, ]{52) =7 A ’U(k’l, ]fg), (434)
/8(07‘62) a(ielvo)
where A = A + A

a(+£1,0) a(l1,0) a(—41,0)
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Theorem 4.7.1. Assume that there exists a positive integer m, and a real number

Uy > 0 such that v(ky, ko —mly) and A v(ky, ko) = (ge )(kl, ks) are known. Then
a(i&) o 1

the heat equation (4.34)) has a solution v(ky, k2) of the form

U(kl, kg) = ﬁm’l}(k‘l, k’Q — mfg) + ’}’ZﬁTﬁl a(gﬁ )(kl, kz — ng). (435)
r=1 !

Proof. By representing A v(ky, ko) = u (ki, ko), from (4.33)) and (4.34)),
a(£41,0) a(xly)

—1
v(ki, ko) — B 0(ki ko —mbs) =7 A u (ki ka)|i e (4.36)
B(0,62) a(£L1)

which yields (4.35)). O

by _
Example 4.7.2. If v = 26(1—5),a # 1, then v(ky, ky) = kie*? is a solution of
-«

4.34). Hence v(ky, ky) = kiek? with W (K1, k2) = 2(1 — a)ki€*? satisfies (4.35)).
o : 1+ 8 : .
Similarly if, v = m, a # 1 and ly = 7, then v(ky, ko) = kycosks is a solution

-«
of (4.34), which satisfies ({4.35)) when (j:% 0)(k1,k2) = 2(1 — a)kycosks.
(64 1,

Theorem 4.7.3. Consider (4.34) and denote v(ki20y, %) = v(k1+L0, *)+v(ki—F1, *)
and v(*, ko £ 03) = v(x,ky + ly) + v(x, ke — €y). Then, the following four types of
numerical solutions of the equation (4.34)) are equivalent:
(a).  wv(ki, ko) = (B — 2ay)"v(ky, ko — miy)
+ > (B = 207) [v(ky £ b, by — (r+ 1)), (4.37)
=0
= ——v(ky, k 14
(5 . Qa,}/)mv( 1, 2+m 2)

o Z _ 2047 kl + by, ko + (T - 1)£2) (4.38)
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1 m 3 —2
(@) vl ko) = —olks = mby, o+ mbs) = 3 P S okt =y, ks + (1 — 1))
r=1
m—1 1
— Z ;U(k?l — (S + 2)€1, ]{?2 -+ 852), (439)
s=0
1 moB—2ary
(d) U(k?l, ]{?2) = Wv(kl + mﬁl, kQ -+ még) - Z /YT U(k’l + ’I"El, k?g + (’f‘ - 1)f2)
r=1
m—1 1
-> ¥v(/ﬁ + (54 2)ly, kg + sbs). (4.40)
s=0
Proof. (a). From (4.34]), we arrive at the relation
v(k1, k2) = (B = 20y)v(ky, kg — L) + yv(ky £ 41, ke — £o). (4.41)

By replacing ko by ko — lo, ko — 20, ..., k,y — mly in (4.41)), we obtain the expressions
for v(ky, ko — rly) and v(ky & €, ko — rf3). Now proof of (a) follows from (4.41]).

(b). The heat equation directly gives the relation

1 g

U(k’1, k’Q) = mv<k17 ]{72 + €2) - m

U(k’l + 61, k’Q) (442)

The proof of (b) follows by replacing ko by ko + lo, ko + 205, ..., ky, + mls repeatedly
and substituting the corresponding v-values in (4.42]).

(¢ ). A simple calculation on (4.34]) gives the expression
p = 2ay

1
U(k’1, k’g) = ;’U(k’l - 61, k’g + 62) - U(lﬁl — 61, k’g) — U(k‘l — 261, k’Q)
The proof of (c¢) follows by replacing ki by ky — €1, k; — 204, ..., ky, — mly and ko by

ko + lo, ko + 20, ..., k,, + mly repeatedly.
B —2ay

1
(d) From U(kl, kg) = ;U(kl + gl, kQ + 62) - U(kl + 51, k‘g) — U(/ﬁ + 2€1, kg),
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the proof of (d) follows by replacing ki by ki + €1, ky + 204, ..., ky, + mly and ko by

k‘2+€2,k‘2+2€2,...,k‘m+m€2. UJ

Remark 4.7.4. Theorem shows that the present temperature v(ky, ko) is
obtained by knowing either the past temperature or the future temperature at certain
positions. Also, if we know either the past or present temperature with v(ky, ks), we

can determine the heat transmission factors a, 5 and 7.

Example 4.7.5. The following example shows that the diffusion rate of rod can be
identified if the solution v(ky,ka) of is known and vice versa. Suppose that
v(ky, ko) = eM7*2 s a closed form solution of , then we have the relation

A etk = A elithe 4 A Rt hich yields

£(0,£2) a(1,0) a(—£1,0)
ek1tkatls _ Bekﬁ-kz — 7[ek1+k2+€1 4 ekrtha—ty 2a€k1+k2} and

e — B
= . 4.4
TT e et —2a (4.43)

The MATLAB coding is given below to verify (a) of Theorem by assuming
m=15, ki =1,0,=2,ky=2,l,=3, a=2, =3, v(ky, ky) = elr1Fk2),

exp(3) = (3 —4. % ((exp(3) — 3)./(exp(2) + exp(—2) — 4))). A (15). * exp(—42) +
symsum(((exp(3) — 3)./(exp(2) + exp(—2) —4)). % (3 — 4. % ((exp(3) — 3)./(exp(2) +

exp(—2)—4))).Ar.x((exp(14+242—(r+1).%3))+(exp(1—242—(r+1).%3))), r, 0, 14).

The following theorem gives the condition for Trigonometric function to become a

solution of alpha-beta heat equation (4.34)).
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Theorem 4.7.6. If A v(ki, k) =0 A wu(ky,ke), then the equation (4.34) has
a(—¢1,0) a(01,0)

a solution cos(ky + kz) if and only if either cos(ky + ko) = 0 orsint; = 0.

Proof. From the heat equation (4.34)), and the given condition, we arrive

A U(kl, kg) = ’y(l + (5) A 'U(kl, ]€2) (444)
/8(07Z2) a(elvo)

i(k1+k2) —i(k1+k2)
e +e ]
2

A [eitath) pemitith)] — 4 (1 46) A [eikithe) o emilhatk2)] which yields
B(0,62) a(01,0)

If cos(ky + ko) =

= v(ky, ka), then (4.44)) becomes,

ei(k1+k2) [eilg _ /8 _ ,y(l + 5)€i€1 _ C(] — e—i(lﬂ-‘rk‘g) [eiﬁg _ B _ ,.}/(1 + 5)€_Ml _ Oé:|,
which implies either e!(f1tk2) 4 e=ilkithe) — () or g1 = ¢~
and hence cos(k; + k2) = 0 or sinly = 0.

The proof of the converse part follows by retracing the above steps. n

4.7.2 Discrete alpha-beta heat equation of thin plate

In the case of thin plate, let v(k1, ko, k3) be the temperature of the plate at position

(k1, ko) and time k3. As in the case of rod, the heat equation for the plate is

A vk)=v A (k) (4.45)
8(0,0,¢3) a(££1,2))
where A = A + A + A + A

(E2)  alr,00)  a(—1,00)  a(0,6.0)  a(0,—£.0)
Theorem 4.7.7. Assume that there exists positive integer m, and real 5 > 0

such that v(ky, ko, ks —mls) and A v(ky, ko, k3) = w  (ky, ks, k3) are known
a(E£L(1,2)) a(£L,2))
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functions. Then the equation (4.45) has a solution as

’U(k?l, k?g, k?g) = Bmv(k‘l, ]{72, ]{Z3 — m€3) —+ Yy Z Br_l u (]{31, ]{32, ]{33 — ng). (446)

= a(£L(1,2))
Proof. The proof is similar to the proof of Theorem [£.7.1] O

Consider the following notations which will be used in the subsequent theorems:
v(ka2) £ la2),*) = v(ks £ 00, ko, %) + v(ki, by £ Lo, %),
v(k(2,3) £ l(2,3), %) = v(*, ko by, k3) + v(*, ko, kg = £3),
v(ky £ O, %, %)=v(ky + 01, *, %) + v(ky — €1, %, %),

V(% %, k3 £ 03) = v(*, %, ks + €3) + v(*, %, ks — (3).

Theorem 4.7.8. Assume that v(ky, ke, k3) is a solution of equation ({4.45)),

v(kitrly, kotrls) exist. Then, the following are equivalent:

(@) (k1o ) = (5 = ) "o(hs, b by = mats) + 5= 23 — 40

[U(kl + 61, kg, kg — (T’ -+ 1)63) —+ U(kl, kg + 62, kg — (7’ -+ 1)63)], (447)
1
(b) 'U(kl, k2, kg) = mv(kl, k2, kg + m£3>
_ Z = 4ow [v(ka2) £ a2, ks + (r — 1)65)], (4.48)
1 m 4
(c). v(k) = Py—mv(lﬁ — mly, kg, k3 +mlz) — Z - roz”y
m=1 1
(k’ 7’61,]’6’2,]{'3 + (’I“— 1)63) Z ? ( (T+2)£1,k527k§3+7”f3)
r=0
m—1 1
— Z —rv(k:l — (7’ + 1)61, ]{72 + 62, ]{73 + T€3)7 (449)
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1 m 3—4
(). v(k) = —v(ki +mby, ky, ks +mls) — > *B—f”x
Y r=1 Y
m—1 1
U(k‘1 + ’I“fl, ]{?2, k‘g + (7’ — 1)@3) — Z ?U(lﬁ + (T + 2)€1, ]{?2, k’g + 7“@3)

r=0

m—1 1

Z VT kl —|— r -+ 1)61, kQ + 62, kg + 7“63) (450)

r=0

Proof. The proof of this theorem is similar to the proof of the Theorem O

4.7.3 Discrete alpha-beta heat equation of medium

In most general case, consider homogeneous diffusion medium in R3. Let
v(ky, ko, k3, k4, k5) be the temperature, at position (ki, ks, k3), at time k, with density
(or pressure) ks and denote k = (ky, ks, ks, k4, k5). The heat equation for medium

by considering pressure and density is formulated as

A vk)=y A k), (4.51)
B(£4,l5) a(£L(1,2,3))
where A = A+ A +A+ A +A+ A .

a(£a23)  aln)  a(-f)  allz)  al-l) allz) a(-L3)

As in the case of rod and thin plate, equation (4.51)) has four types of solution as:

(a). v(k) = (B — 6ay)™v(ky, ks, ks, ky — mly, ks —mls)

+ (B = 6ay)" [U(k’(m,?,) +Ll23), ks — (r+ 1)ly ks — (1 + 1)55)] ; (4.52)
r=0
1
(b) U(k) (6— 6a7>mv(k1,k2,k3,k4+m€4,k5 +m€5)

; B 6cw [(k:123 *l123), k4+(r—1)€4,k5—|—(r—1)£5)} (4.53)
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T’ + 1)61, k(g 3) + 5(2 3)s kq + T€4, ks + 7‘€5) (454)

1
(d) U(]{?) = ,y—ml)(kil + mEl, /{52, l{?g, k4 + m€4, k5 + m€5)

m 6
Z B OK'}’ (k’l—f—’l“gl,kfg,k??,,kq—l—(?“—1)6471{354-(7“—1)€5>

—_

m—1 1
? (k?l + (T + 2)61, k (2,3) + 6(273), k?4 + 7“64, ]{35 + 7”65)
r=0

m—1
- Z %Uuﬁ + (14 1)y, ko3 £ l2,3), ka + 1ly, ks +10s). (4.55)

=0
Thus, we have developed several types of discrete partial difference equation as well
as discrete partial g-difference equation with solutions for heat flows in long rod,
thin plate and medium. One can obtain Logarithmic functions as exact solutions of
these types of partial ¢-difference equations of heat flows. For usual discrete partial
difference equation one can find extorial functions (defined in the seventh chapter)

as exact solutions of heat flows.



Chapter 5

Fibonacci Heat Equation Model

5.1 Introduction

In this chapter, partial Fibonacci difference equation is introduced and subjected
to investigation in discrete heat equation by having recourse to Fibonacci difference
operator with shift values. By having Fourier law of cooling as its basis, the heat
transfer in the long rod is investigated by Fibonacci partial difference equation and

the solutions obtained are validated by MATLAB.

67
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5.2 Fibonacci difference operator and equation

Consider second order Fibonacci number defined as Fy, = 1, F; = x; and
F, = x1F,.1 + 22F,. These second order Fibonacci numbers are used to find
solutions of Fibonacci difference equations for heat flows. If the function v(ky, k2)
is assumed as temperature of a long rod at the position k; at time ko, it will be
influenced by certain quantity of heat values at the neighbouring points k; — 241,
ki — l1, k1 + {1, k1 + 201 etc. Hence, we obtain the two and three variable heat

equation model.

5.2.1 Fibonacci difference operator on two variable

For x = (1, x3), the Fibonacci difference operator on two variable real valued

function v(k) with shift values ¢ = (¢1,¢3) and for k = (k;, ko) is defined as

>
<

—
=y

~
I

v(k) — x1v(k — £) — xou(k — 20). (5.1)

The operator in ([5.1)) becomes Fibonacci partial difference operator if either ¢; or /5
is zero but not both. The equations involving a first order linear Fibonacci partial

difference equation is given by

JC%)v(k:) =u(k),l = (0,43) or (£1,0); x=(z1,2z2)#0. (5.2)
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The equation (5.2)) has a numerical solution of the form

U(k’1, ]{32) — F,—H_ll)(k}l, k’g — (n + 1)€2)

n

— wa Pk, by — (n 4 2)6) = > Fru(ky, ks — ily). (5.3)

=0
5.2.2 Discrete heat equation model with two parameters

Consider the temperature of long rod wv(ki, ks). By (b.1) and Newton law of

cooling, discrete heat equation of rod is expressed as

A vk, k) =7 A vk, ke); x=(x1,22), (5.4)
x(O,fg) z(+41,0)
where A = A + A

2(£0,0)  2(0,0)  a(—£1,0)

Our main aim is to study and discuss the solution of the Fibonacci partial difference
equation (5.4)). Here, we derive the temperature formula for v(ky, k2) at the position

ki and at time k.

Theorem 5.2.1. If A wv(ky, ko) = (gg )(kl, ko) are known, then the heat equation
x(:i:ﬁl) x 1

(5.4) has a solution

U(k‘l, kQ) = Fn+1U(I€1, ]{72 - (Tl + 1)62)

+ IanU(kl, ]{32 — (TL + 2)62) + Y Z E (:,Ilfé )(k?l, k‘g — ng) (55)
i=0

Proof. By representing A v(ki, ko) = u (ky, ko), 1) becomes
x(i£1) iv(iel)
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U(k’l, kQ) = Fn+1v(k1, k2 - (n + 1)62)

-1
+ QngnU(k’l, k’g — (n + 2)62) + Y A u (k’l, k’g) (56)
1‘(0,52) -T(:tgl)

The proof of (5.5)) follows from the relation,

-1

A u <k17k2):Z-Fz u (kl—T(0)7k2—i€2> in . ]

z(0,65) T(+Ll1) i=1  z(Eh)
Theorem 5.2.2. Consider (5.4]) and denote v(ky %y, *) = v(ki 4+, *)+v(ky—£1, *)
and v(ky £+ 201, %) = v(ky + 201, %) + v(ky — 201, %). Then, the following four types

solutions of the equation (5.4]) are equivalent:

" ooyt .
cokn k) = (ke kg — b)) — S (kg £ 0y ey — (i — 1)
(a) v(ky, ko) (1_27)mv( 1, ky — mly) 1:21 (1_27)171( 1 1, ko — (i )l2)
Y T . ‘
Y ay (001, ke = (4 1)) = ol 220,k = (1= 1D)6)|, (5.7)
=1
1 — 29)™ m (1 — 27) L
(b). w(ki, ks) = (x—mwv(k’l, ks +mbs) + 3 %v(kl + 01, ks + i)
1 =1 1

_ i 22(1 = 29)" [uka, b + (i = 2)) = yolky £20, ks +ib)], (55)

1
(c).  v(ky, ko) = ,y_mv(kl — mly, ky — mly)

=30 2ol = (i=2)0, By — (= 1)) + ol = (14+2), ko — (1= 1)) |
r=1 17"
m m 1
3 T (ky — il k= (4 1)) — 32 ——v(ky — (i 4 1)1, ks — (i — 1)05)
r=1 17 i=0 Y
(12 . .
- L ( :pl’yi )U(kl — ’lgl, ]{72 — (Z — 1)62), (59)

1
(d) U(kl, kQ) = %U(kl + mﬁl, ]{2 — még)
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)

71
- [v(k1+(z’+2)€1, ks — (i —1)0o) vk + (i —2)01, kg—(i—%)]
r=1 217"
+ 3 vk il — (4 1)) — 3
r=1 17

i1 U(k‘l + (2 + 1)61, ]Cg — (Z — 1)62)
i=0 "
)

o (1-2
_Z( i’Y

Z :L‘_l’y ’U(kfl + Zlgl, k?g — (Z — 1)62)

(5.10)
Proof. (a). By applying the difference operator A given in (5.1]) on 1'
z(0)
X X2
ki, ko) = ki, ko — ¢ ki, ko — 20
v(ki, k2) (1_27)11( 1, ko — lo) + (1_2””( 1, k2 2)
Ty T27y
— ki £ 01, ky) — ————v(k; £ 201, k). A1
(1_27)0( 1 £ 41 k) (1_27)0( 1 £ 201, k) (5.11)
Replacing ks by ky — by, ko — 209, ... ks — mly in (5.11)), v(ky, ko — rls) and

v(ky £ 01, ky — rls). Now proof of (a) follows by applying the values in ([5.11]).
(b). By expanding the operator in the heat equation ({5.4]), we arrive at
1-2
ok k) = (1—2y)

T U(kl,kg—l-gg)+")/’U(]€1:|:€1,I€2—|—€2)
1

— & U(]fl, kQ — gg) — "}/U(l{ll + 261, k’Q + 62)

]. (5.12)

The proof of (b) follows by replacing ko by kg + lo, ko + 205, ..., ko + mlsy repeatedly

and substituting corresponding ~-values in (|5.12))

(¢ ). A simple calculation on (5.4]) gives the expression

Ty
X2

T
’U(l{?l, k?g) = ;U(k?l — fl, k?g — fg) + —21)(]{31 — 617 k?g — 262) — U(k}l — 2€1, l{ig)

1-—-2
o |:U(k'1 —+ 61, /{2) -+ U(kl — 361, k’Q)] — ( ],’lfy’y)v(kl — 61, k‘g)
The proof of (c¢) follows by replacing ki by ki — l1,ky — 244, ....,k; — ml; and

ko by ko — Uy, ko — 205, ..., ko — mlsy repeatedly.
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(d). The expansion of ([5.4) gives the expression
1
v(ky, k) = ;U(lﬁ + Uy, kg — La) + %Mh + Uy, kg — 203) — v(k1 + 201, ko)
1
1-2
—@ |:U<]€1 + 361, kz) + U(kl — 61, k'Q)] — %’U
1

The proof of (d) follows by replacing ky by ki + €1, k1 + 204, ..., ky +mly and ky by

ki+ 101, ks).
o (k1 + b1, ko)
ko — by, ko — 205, ..., kg — mlsy repeatedly. Fibonacci heat equation models can be

applied for getting more accuracy in heat transfer. m

The following example is an illustration of Fibonacci partial heat equation ((5.4)).

Here, we discuss the exponential solution of heat equation (|5.1)).

Example 5.2.3. The dissemination rate of rod is identified by the given example if
the solution v(ky, ka) of (5.4) is known. Suppose that v(ky, ke) = e %2 is an exact
solution of (5.4)), then we have the relation

A efrth = [ A efith 1 A eMtR] which yields

0,¢2(x) 4y (z) —1(x)
€k1+k2 _ x1€k1+k2—52 _ x26k1+k2—2€2 — ’7[6k1+k2 _ xleklifﬁ-k’z _ x2€k1i2f1+k2} )
Cancelling e****2 on both sides derives

1 —zie 2 — pqe 202

v = (5.13)

2 —xi(ef +el) — xo(e2h +e720)’
For numerical verification, we give the MATLAB coding for (a) of Theorem [5.2.2),
Whenm =1,k =1,0, =1, ky =2, lo =2, 2y = 1, 35 = 2, v(ky, ky) = elF1tF2)
and 7y is as given in , we have the following coding

((1. A 1)./(1.102638526. A 1)). * exp(3 — (1. * 2)) — (symsum((((—0.051319263).

(1. A 1))./(1.102638526. A (i))). % (exp(4 — ((i — 1). % 2)) + (exp(2 — ((i — 1). *
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2)))),4,1,1)) + (symsum(((2. % (1. A (i — 1)))./(1.102638526. A 7)). * (exp(3 — ((i +

1).%2)) + (0.051319263. % ((exp(5 — ((i — 1). #2)) +eap(1 — (i — 1). #2)))))),4,1,1)).

5.2.3 Fibonacci heat equation model with three parameters

For getting accuracy value of heat transmission, ([5.1)) can be replaced by Fibonacci
partial difference operator with three parameter x = (x1, 25, x3) as

A v(ky, k) = vk, ko) — z10(ky, ko — £3)
LI:(O,ZQ)

- l’gv(lﬁ, kQ — 262) — .’Ig’l)(kl, kQ — 362) (514)
In this case, the corresponding heat equation model is taken as

A vk k) =~ A vk, ke); x= (21,29, x3). (5.15)
z(0,02) z(£4y)

As in the proof of Theorem we get the following theorem.

Theorem 5.2.4. Assume that there exists a positive integer n, and a real number

Uy > 0 such that v(ky, ko —nls) and A v(ki, ko) = (gg )(kl, ks) are known. Then,
x(i€1) x 1

the heat equation (5.15)) has a solution v(ky, ks) of the form

’U(k’l, k’g) = Fn+1’U(k’1, ]{32 — (TL + 1)62) + (JIQFn + $3Fn_1)v(k’1, ]{72 — (n + 2)62)
Eov(ky, ke — F; ky, ko — i 1
+ 230 (ky, ke (”+3)€2)+’7; zﬂ?(x)( 1, ky — ily), (5.16)

where F() = 1, Fl = T, FQ = $1F1+.CE2F0 and Fn+3 = $1Fn+2+$2Fn+1+£If3Fn, n > 0.
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We use the following notations in the subsequent theorems:
v(ki £y, %) = v(k1+01, %) +v(ky—01, %), v(k1 £201, %) = v(k1+201, %) +v(ky — 201, %),
v(ky £ 30, %) = v(ky + 301, %) +v(ky — 301, %).

The following theorem is an improvement of Theorem of heat transmission.

Theorem 5.2.5. Consider the equation (5.15)). Then, the following four types

solutions of the equation (5.15)) are equivalent:

(a) v(ky, k2) ig_QV) v(ky, ko —mly) — ;m v(ky 0y, ks —(i—1)05)
+¢=Z1 ﬁ [U(kh ko — (i + 1)ly) — yo(ky £ 20, ko — (i — 1)52)]

=1
1—2v)™ m 1 — 2~)i-1 '
(b) /U(kla k?) = ( - mfy) —U(kl) k2 +m€2) -+ Z %U(kl igl,kz "—262)
1 i=1 1
mopo(1 — 2+)it . .
_ g : i’y) [U(kl, ko + (i — 2)0y) — yo(ky + 201, ky + MQ)}
i=1 1

_ ij zs(l = 27)"7" (001, ke (1= 3)62) = vl 301,k +i62) |, (5.18)

=1 1’12
1
(C). ’U(l{fl, ]{?2) = —mv(k:1 — mﬁl, kQ mfg) -+ Z —U(k'l — Zfl, ]{?2 (Z + 1)62)
Y r=1 371'7

+ Z —Zv(kl—Z€17k32—(l+2)€2) Z _1’0(]{?1—(Z'—f-l)gl,kfg—(l.—l)fQ)
r=1 L17 =07
m T2 . . .

-E [ (ki — (i —2)00, ko — (i — 1)) +v(ky — (i+2)01, kg—(@—mz)]
r=1 +1

-3 - f;—l [v(kl—(z—g)el, ks — (i —1)0o) vk — (i +3)11, kg—(z—l)ﬁg)]
r=1 41

- Xm: L= 2-7)0(161 —ily, ky — (i — 1)la), (5.19)

x 1
im0 17
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1 m
(d) 'U(kl, kz) = %v(kl + mfl, kg m£2) -+ Z f—?y'l}(kl -+ ’lgl, kg ( 1)62)
r=1+1
m m 1
+ Z _U(kl + Zgl, k?2 - ('l + 2)€2) Z ﬂ’v(lﬁ + (Z + 1)61, k’g - (Z - 1)€2)
r=1 217" i=0 "
- o0+ +2)00, ks = (= 1)) + 0k + (= 20, ke = (0= 1))
r=1 1’1’71
- 1 [ (ky + (i + 3)00, ks — (i — 1)) +v(ky + (i — 3)04, by — (i — 1)62)]
=1 Ty
(12
-y A =29y 4 i, ko — (i — 1)), (5.20)
— n
Proof. The proof of this theorem is similar to the proof of Theorem [5.2.2 O

Example 5.2.6. The following example shows that the diffusion rate of rod can be
identified if the solution v(ky, ko) is known and vice versa. Suppose that v(ky,ks) =
ek1tR2 s q closed form solution of (5.15)), then we have the relation

A €k1+k2:7[ A efith2 1A ek1+k2}7

0,02(x) L1 (x) —{1(x)
which yields ek1the — giekitke—ta _ g chitka=2ts _ g, ckitha =302
— ,y[ekl—l-kz _ xlelﬂ:tfl—l-kz _ xzekl:l:Qfl—‘er _ $3€k1i3Z1+k2:| .
Cancelling e¥*T%2 on both sides we get
1 —xie ™ — pge 22 — pqe 302

N = (5.21)

2 — (el + e ) — xo(e2hr 4 e720) — g3(e3h + e30)

For numerical verification the MATLAB coding for (a), (b), (¢) and (d) are as

similar as that of two parameters given the previous section.
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5.3 Formation of Fibonacci heat equation

Here, we extend the theories in sections[5.2.2/and |5.2.3] For z = (x1, x9, x5, ..., x,),

the z-difference operator with r-parameters on real valued function v(k), k = (k1, ko)
with shift values ¢ = (¢1, {5) is defined as

% U(k’1, k’g) = U(k’1, k’g) — xlv(krl — El, k‘z — EQ) — {IJQU(]{Il — 261, ]{72 — 252)

- l’g?](kl — 361, k’g — 362) — . a:rv(k‘l — 7'61, kQ — 7°€2>. (522)

The corresponding generalized Fibonacci partial difference equation with two

parameters is given by

A)U(k) = U(l{?),€ = (07£2> or (6170)7 T = (Ilax% "‘7337“>7 (523)
z(¢

using inverse principle, the equation ([5.23]) has a numerical solution of the form

khkj ZZ{EJ n+i—jU k‘l,kfg (n —I—’L EQ ZFU, k‘l,k‘g — ’lﬂg) (524)

=0 j=1i =0
where F,, =0 when n <0, Fy =1, I} =z, Iy = 21 F) + 22 Fy,

F3 =x1F5 + 21 Fy 4+ 23Fy, and F,, = 21 F,_1 + 20F, o+ ... + 2, F,,_, for n > r.

5.3.1 Generalized Fibonacci heat equation of long rod

Here, we use the operator given in (5.22)) to form this model. Let v(ky, k2)

be the temperature at the position k; and time ks of long rod [9]. By (5.22)) and
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Newton law of cooling, discrete heat equation of rod is expressed as

A vk, k) =~v A vk, ko), x=(x1,79,...,2,), (5.25)
I(U,Zz) z(:l:Zl,O)
where A = A + A . Here, we derive the temperature formula for v(k, k)

z(+41,0) z(£1,0)  x(—41,0)

at the common position (ky, ks).

Theorem 5.3.1. If A wv(ky, k) = (fg )(k:l, ko) are known, then the heat equation
l‘(:‘:fl) x 1

(5.25) has a solution of the form

k’l, k’Q Z Z -Tan-l—i—jU(kl; kg — (n + Z)gz) + Y Z -Fz (:’ltLe )(kl, k’g — 262) (526)
i=0

i=0 j=i

Proof. By representing A v(ki, k) = u (ki,ke), (5.25) becomes
x(iél) JJ(ZtKl)

m m

(ki k) = Y aiF vk, ky — (n+ 1)) + 7 (OAH & )(kl,kQ). (5.27)
=0 j=1 2)* !

The proof of (5.26) follows from the relation,

-1 n
u (ki k) =3 F u (ki —7(0), ks —ily) and (5.27). 0
z(()A,ZQ)z(:t€1)( 1, h2) Z=Z1 gc(ﬂl)( 1 —7(0), ky —ily) an

Theorem 5.3.2. Consider (5.25)) and denote v(ki %0y, %) = v(k1+£q, *)+v(ki—{1, %)
and v(ky £ 201, %) = v(ky + 201, %) +v(ky — 201, %). Then, the following four types of

solutions of the equation (5.25)) are equivalent:

1 (kl, kg nfg) Z #E2!

@ olhk) = e

v(ky £ 0,k — (i — 1)ls)

+ {z; (51”’”_161;—7)@- [k, ks — (i 4+ (= 1)) —yu(ky £ 760,k — (1= 1)6)] }

(5.28)



5. Fibonacci heat equation model 78

o) othk) = 2 oy ) 4 $3 10

Iy i=1 1t

v(ky £ by, ko +ily)

- {2“1;—2”1 ks by + (1= 1)) —olky £ 16 ks +it)] b, (5.2

(). (k1 k) = %U(kl —nly, by — nly) — g;o %v(zﬁ (4 D)l ke — (i — 1))
- :0 (1;72])0(/{1 il ks — (i — 1))
—é {21 xlz otk = (= 1) e = (= D) +ol = (4 1)0, ks — (1= 1)6)] |
+ Z{ Dl —ily, kg — (i 4 (r — 1))@)}, (5.30)
(). vk, ky) = %v(k:l 0y, by — nby) — ﬁ; %v(kl (i 1)l ks — (i = 1)6)
_ :0 (1;72])1)@1 bty ke — (i — 1)0)
—é {21 Ilj otk + G =)k — (1= 1))+l + G+ 1),k — (- 1)6)| }

+ i {i _U(kl + il ky — (04 (r — 1))€2>} . (5.31)

x
= Lo w

Proof. (a). From (5.25)), we arrive at the relation

I Ty
——v(ky, ky — ¢ ) —v(ky, k
(1_27) (1; 2 = >+ +(1_2/y) ( 1y 2 — Tﬁ?)
1y

_ Ty
(1 _2’)/)7}(]{?1 :l:fl,]{ig) (1 — 2’)/)1)(]{31 :l:’f’gl,k‘g) (532)

U(kla k?) -

By replacing ko by ko — lo, ko — 20s, ..., ks — mlsy in (5.32)), we get the expressions for
v(ky, ko —rls) and v(ky £1rfq, ko). Now the proof of (a) follows by applying all these

values in ((5.32)).

(b). The heat equation (5.25)) gives the relation
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1-2
v(ky, k) Z( - V)U(k1,k2+f2)+7U(/f1i€1,k2+f2)
1

_r2 [v(k:l, ky — 05) — ok = 261, Ky + 52)}

x

Tr—1

[v(kl, ks — 0s) — yulks £ (r — 1)1, ks + ez)}

T

— &[U(kl,kg —62) —")/’U(kl :|:7”€1,]§2 +€2):| (533)

T

The proof of (b) follows by replacing ko by kg + lo, ko + 205, ..., ko + mly repeatedly
and substituting corresponding ~y-values in ([5.33)).
(¢ ). A simple calculation on ([5.25|) gives the expression

1 x
U(l{?l, ]{32) = ;U(k‘l — £17 kg — Eg) — U(k’l - 2€1, kg) + —27)(]{?1 - fl, ]{?2 — 2£2)

17

—i—ﬁv(kl — Uy, kg —3ls) + ... + ﬂv(/ﬁ — Uy, kg —1ly)

T17y Z17y
T T
—x—j [v(kﬁl U0, k) + vk — 361, kz)} - x—i’ [v(k:l + 201, k) + v(ky — 40y, kz)]
T, 1—-2
—.— — [U(kl—F(?“— 1)61, kg)—i-’l](kl — (T—Fl)gl, k2>:| — ( 7>'U(l€1 —gl, kg)
T Ty

The proof of (c) follows by replacing ki by ky — €1, ky — 201, ..., ky — mly and ky by
ko — lo, ko — 205, ..., ko — mlsy repeatedly.
(d). By expanding the equation ([5.25]), we get the expression

1
’U(k‘l, k?g) = ;U(k?l + Ela kQ — Eg) — U(k’l + 2€1, ]{52) + ;—271)(]{31 + Ela ]{32 — 2£2>
1

—|—£U(k1 + 61, ]{32 — 3f2) + ...+ Tr ’U(k’l + fl, k’z — 7“62)
17 17
X X
_l’_2 [’U(kl + 361, kQ) + ’U(kl — 61, kg):| — x—g [’U(kl + 461, kg) + ’U(kl — 261, k’g)]
1 1
T, 1-2
—. — — |:U(/€1 + (T’ + 1)61, ]{32) + U(k‘l - (Tl)gl, kg)] — ( /V)U(kl + 61, k‘g)
T 1y

The proof of (d) follows by replacing ki by ki + €1, k1 + 204, ..., ky + m¥ly and ky by
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k‘g — 627 k‘g — 252, ey k?Q — mfg repeatedly. ]
The following example is the numerical verification of Fibonacci heat equation

of rod by exponential solutions.

Example 5.3.3. The diffusion rate of rod can be identified if the solution v(ky, ks)
of (5.25)) is known and vice versa. Suppose that v(ki, ko) = e*1+*2 is a closed form
solution of (5.25)), then we have the relation

A €k1+k‘2:7[ A 6k1+k2+ A €k1+k2];
0,02(x) L1 (x) —{1(x)

which yields eF1tke — gefithke=te g ehithe—rtz — 7[6"“*’“2 — ppefEhtke

T, ekl +réy +k2:| .

Cancelling e**%2 on both sides we derive

lo 67262

1 — 21672 — 29
2 — (el +eb) — xo(e?r 4 e7200)

v = (5.34)

We give the MATLAB coding for (a) of Theorem whenm=1,r=2,k =1,
bho=1,ky =2 0,=2 2, =1, 29 =2, v(ky, ko) = e®1¥*2) and ~ is as given in
(5.34). The code is as follows:

(1. A 1)./(1.102638526. A 1)). * exp(3 — (1. * 2)) — (symsum((((—0.051319263).
(1. A 4))./(1.102638526. A (7))). * (exp(4 — ((i — 1). % 2)) + (exp(2 — ((i — 1). *
), 4,1, 1)) + (symsum(((2. * (1. A (i — 1)))./(1.102638526. A 4)). * (exp(3 — ((i +

1).%2)) +(0.051319263. % ((exp(b — ((i —1).%2)) +exp(1 — ((i — 1).%2)))))), 7, 1,1)).
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5.4 Fibonacci delay heat equation models

In this section, we extend theory of discrete heat equation, discrete partial heat
equation, discrete a-f heat equation and discrete g-heat equations to discrete
Fibonacci heat equation for long rod, thin plate and medium for getting more
accuracy results.

Also, the higher order partial difference equation of heat flow of thin plate is

A vk)=v A vk)+ A v(k)], (5.35)
z(0,0,€3) x(£1,€270) z(—41,—£2,0)

where A v(k) =v(k)—ziv(k—{0)—xv(k—20)—...—xv(k—nl) if x = (21, 29, .., 2,)
(L)
and ¢ = (fl,gg,gg).

5.4.1 Fibonacci delay heat equation of long rod

Consider a long rod with v(ky, ko) as temperature, in which k; and ko denote
position and time respectively [0]. By Fourier’s cooling law and using (5.1)), the

discrete delay heat equation is obtained as

A vk k) =7 A vk, ky—0); x= (21,22 ..., 2:), (5.36)
x(0,02) x(+£1,0)
where o is a delay factorand A = A + A . The objective of this section is

x(+41,0) z(€1,0)  x(—¢1,0)

to study and discuss the solution of the heat equation ([5.36]) with Fibonacci operator

of rt* order.
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Theorem 5.4.1. If A v(ky,ky—o0) =

u (ki,ky — o) is given then the delay
z(+41) z(+L1)

heat equation has a solution of the form

U(kl, k‘g) = Z Z J]an+i_jU(]€1, k’g — (TL —+ 2)62) + Y Z E z(illél)(kh k2 — ZEQ — O').
i=0 j=i i=0

(5.37)

Proof. By representing A v(ki, ks —0) = u (ky, ko — o), (5.36)) becomes
M E=40)! x(£Lr)

m m

(ki k) = D) @ Fovijo(ky ey — (n+i)l) + 7.8 L Gk = ). (5.38)
i=0 j=i )

The proof of (5.37) follows from the relation,

-1 n
A u (ki,k)=>F, u (ki —r(0), ks —ily) and using (5.38)). ]
5‘(0752)‘”&"1)( 1K) 1:21 x(ﬂl)< 1= 7(0), ko 2) g

Theorem 5.4.2. Considering (5.36)), and denoting v(ky £ €1,%) = v(ky + {1, %) +
v(ky — 0, %) and v(ky £ 261, %) = v(ky + 201, %) + v(ky — 201, %), we obtain the four

types solutions for ((5.36|) as given below.

(a). U(k’l, kg) = ZL‘an(k‘l, k’g — nﬁg) — Z ’}/l'li’l)(k‘l + 61, k‘z — 0 — (Z — 1)£2)

=1
n ) p n i
+ Z ")/.Tll_l’l)(k’l, k’g — 0 — (Z — 1)€2) + Z { 237«33'12_1 |:U(k'1, kQ — 7’62)
i=1 r=2 i=1
—’}/U(kil + Tfl, ]{72 — 0 — (Z - 1)62):| } s (539)

n

1
(b). (k1 ko) = —v(k1, ko + nbs) — 3 xl (ki ko — 0 + ils}
1

X1 i=1

5kt bk — (i Do it} — 3 {i I [ohe, ko 4 (i = 7))

i=1 Ty r=2 Li=1 L1

ks £ 7l ky — 0+ ug)] } , (5.40)
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1
(C). U(kl, ]{52) = —U(kl — nﬁl, kQ +no — nﬂz)
"

-> — v(ky — (i + Dl ko + (i — 1)o — (i — 1)f3)

2—17
no 1
,L:Zlﬁ ( 261,k2+20—(2—1)€2)
+1; l’l’yl 1 ( Zgl, kQ + (Z - 1)0’ — (Z — 1)62)
p n
iy I — (i =), ks + (i — D)o — (i — 1)b)

r=2 Li=1 $1VZ

to(ky — (r+ i), ks + (i — 1o — (i — 1)42)] }

DN I

T
=1 17

v(ky —ily, ko +ioc — (i + (r — 1))52)} (5.41)

1
(d) ’U(kl, ]{?2) = %’U(lﬁ + nél, k’g — nég)

n

-y 7}_1@(/{1 (i D)k + (= D)o — (i — 1))

n

1
— Z —ﬂ](l{?l + 7:61, k‘g + 10 — (Z - 1)€2)

i=1 17

+ Z ’U(k’l + Z[l, k’Q + (Z — 1)0' — (Z — 1)62)
=y

=N ol 4 (ke £ (= o — (- 1))
r=2 li=1 3717

ok + ()0, ko + (i — Do — (i — 1)@)} }

D T

v(ky +ily, ko +ioc — (i + (r — 1))62)} (5.42)

Proof. (a). Applying the corresponding difference operators (5.36]), we get

U(kl, k’g) = xlv(k:l, k?g - 62) + ...+ xrv(krl, k?g - 7“52)

— LUl’}/'U(kl + 61, kg) — ... l’r’}/'l}(kl + Tgl, ]{Zg) (543)
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Replacing ko by ko — lo, ko — 205, ..., ko — nly, we get the proof.

1
(b). v(kn ka) = —vlki, by + €2) +yolky & fa, ks — 0 + €o) - xlv(krl, ky — 0+ 0o)
1 1

—% [’U(k‘l, k‘g — 62) — ’}/’U(k'l + 261, k‘g — 0+ gg)]
1
— — m(;_l) |:U(k1, kQ — 62) — ’}/U(kl + (T — 1)61, kg + gg)]
1
— %[U(l{ll,kg —€2> —’yv(k;l :i:'f’gl,kz —U+£2)i| (544)
1

When changing ko by ko + lo, ko + 20s, ..., ko + nly repeatedly, we get the result.

(¢ ). The expression ([5.36]) becomes

1 1
’U(kl, kg) = ;U(kl - gl, kg + o0 — €2> — U(lﬁ — 261, k’Q) +

—
X1

(kl — gl; kQ)

2 (ke — Oy g+ 0 — 20y) + —2 vy — £y, s+ 0 — 3Ly)

1y 17y
“+...+ &U(kil — 61, k?g + o0 — 7’62)
€17y

_ [v(kl U0, k) + vk — 361, 1@)} B [v(kl 201 ko) + vk — 40y, k‘g)]

T T

. 1
—...—x—[v(kl—i—('r’— )01, ka) +o(ky — (r+1)el,k2)} — = ok — b1, ky + 0).
X 17y

Replacing k?l by k‘l - 61, k’l — 2€1, ceey kl - n€1 and k’g by ]{?2 — EQ, k‘g — 262, ceey k?g — TLEQ
repeatedly, we get the proof.

1 1
(d) U(]{?l, ]{?2) = av(k‘l + 51, /{32 +o0— 62) — U(/{?l + 251, k?Q) + —U<k}1 + 61, kQ)

Ty
+—U(l€1 —I—fl, ]{72+0'—2€2) —f-—’U(k’l +€1, k’2+0'—3€2) +...+ U(kl +€1, ]{72 —T€2>
1y 1y 1y
x x
_r2 [v(lﬁ 4301, k) + vk — 01, 1@)} _ [v(kl Al k) + ok — 204, k;g)]
T T
Ty

T

1
—. — — |:U(k'1 + (7’ + 1)61, kz) + U(kl — (7”1)61, kg)] — ﬂv(kl —|—£1, kQ -+ 0').
1

By Changing 1{31 by k?l +€1, k1+2£1, ceey kl—i—nﬁl and ]{?2 by k?g —EQ, ]{32 —262, ...,kg—nfg
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repeatedly, we get the proof. O

Example 5.4.3. Suppose v(ky, ko) = e"T*2 is an exact solution of (5.36)), then we

have the relation A eb1h2 =~ A ebrthemo 4 A ebithe=e] “which yields

x(0,€2) z(€1) x(—L1)
€k1+/€2 _ xlek1+k2—ﬁz - xrek1+k2—7“42
— ,y[ek:l-i-kz—a _ xlekliel-‘rk‘g—a N I.Tek:1i1”£1+k2—0'j| .

Cancelling e*'**2 on both sides we derive

/2 —rl2

1l—ze72 — ... —x2,¢

. 5.45
e~ — xl(efl—o + e—Zl—cr> - = xr(eTgl—O' + 6—7'[1—0) ( )

f)/:

Whenm =1, p=2,k =1,0 =1, ke =2,y =2, 21 =1, 29 = 2, v(ky, ko) =
e 1tk2) and ~ is as given in .

The MATLAB coding for (a) of Theorem is as follows:

exp(1+2) = exp(1)+symsum((0.1313589496.x (exp(3—((i—1).%2))+exp(1—((i—1).%
2)))),1, 1, 1)+symsum((—0.1313589496.xexp(2—((i—1).%2))), i, 1, 1)+symsum ((2.x

(exp(—1) + 0.131359496. * (exp(4 — ((i — 1). % 2)) + exp(0 — ((i — 1). x 2))))),, 1, 1).

5.4.2 Temperature formula for thin plate

In this section, several types of solutions of equation (5.4)) are arrived.

By Newton’s law of cooling, the second order partial difference equation

A v(ky, ke, ks) = 7[ A vk)+ A v(k)} o= (1, 22) (5.46)
2(0,0,¢3) x(41,02,0) x(—£1,—42,0)
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represents discrete heat equation of a thin plate. Here ~ is Fibonacci heat
conductivity of plate. The operators used in the R.H.S of (5.46]) can be denoted

as A . The Fibonacci heat equation ({5.15)) can be expressed as
x(+41,2)

A vk)=v A v(k); z=(x1,19), (5.47)
2(0,0,¢3) z(£l1,2)
where A = A + A + A + A , (4,0) means that i** component is

J:(:I:Klyz) x(£1,0) x(—£1,0) (£2,0) z(—42,0)

¢;, remaining components are zero.

Theorem 5.4.4. In (5.46), if A wv(k) are known functions, say g(k‘), then
x(£41,2)

v(k) = Fhv(k — (n+ 1)ls) + 2o Fpv(k — (n 4+ 2)03) + 'yzn: F, g(k‘ — sl3). (5.48)

Proof. The proof of (5.48) follows by taking m = n = 3 in (5.24]) and equating the

result with assuming that A v(k) = u(k) in (5.46). O
z (£ 2) +

The following notations are used in Theorem [5.4.5]
’U(k’ - (:]:El, 0, 863)) = U(k - (51, O, ng)) + U(k? - (—fl, 07 863))

?}(k — (61, ﬂ:gg,gg)) = U(k — (El,gg,ég)) + U(/ﬂ — (61, —62,63)).

Theorem 5.4.5. If 17 # 0 and (1 — 4v) # 0 then equation (5.4)) has solutions:

" ok — mba) — 3 gEay o(k — .
(@): (k) = = otk = mis) = 3 s [0l = (0,0, (s = 1)65)
Folh— (0,60 (s~ 1)) + ml % ok (0,0, (s +1)63))

- 7{1}(/{; —(£20,0, (s — 1)) + v(k — (0, £20s, (s — 1)43))}] . (5.49)
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). o) = & ;:i;y)mv(k +(0,0,mls)) + f;l (1_1—47)[ (ki + (01,0, sL5))
Folk+ (0,26, s03))] — g%[ (k+ (0,0, (s — 2)s))
. v{v(k + (4201, 0, 503)) + vk + (0, £20s, seg))H , (5.50)
(0). v(k) = %U(k — (mby, 0,mis)) + il 2ol = (60,0, (s + 1))
_ io 7511 [0 = (5 + 1)1, 0, (5 = 1)05)) + 0k = (52 + 3, (5 = 1)05))]
-3 o [0 (65 = 2)60,0, (5 = 1))+ vk = (s + 20,0, (s = 1)63)
ok — (sby, £205, (s — 1)63)) ] Zm: 1;1;&7 (51,0, (5 — 1)), (5.51)

S=

(). v(k) = Vimv(k: +(ml,0,-mey)) + 3° ;;v(k: + (str, 0, — (s + 1)0s))

_Sgo 781_1 [v(k+ ((s4+1)61,0, =(s = 1)) +v(k + (st £ Ly, —(s — 1)g3))]
= 3 T [ole (s 2)60, 0.~ (5= 1)) ol (-2)60,0, ~(s= D))

okt (sly, 2205, —(5—1)03)) } Z (k4 (01,0, —(s—1)0)). (5.52)

Proof. (a). From (p.1]) and (5.4)), it is obvious to obtain

v(k) = (1_47) v(k + (0,0, —(3)) + (1_4,” vk + (0,0, —205))
1y Ty
- 47)0(’@ + (£6,0,0)) — = 47)v(k—l— (£241,0,0))
T17y

vk + (0,40, 0)) — (15”_217)1)@ 4 (0,4£20,,0)).  (5.53)

C(1—4y)
Replacing ks by ks — €3,k — 205,..., ks — mf3 in (5.53)) gives expressions for

v(k +(0,0,ks — rl3)) and v(k £ (¢4,0, ks — rl3), which yields (5.53)).
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(b). The heat equation (5.4) generates the relation

o(k) = & - ) (50,0 + £3)) + yolk + (201, 0, +03))
- %(k +(0,0,—03)) — x;—7 [v(k 4 (£20,,0, zg))]. (5.54)

The proof of (b) follows by replacing ks by ks + €3, ks + 203, ..., ks + ml3 repeatedly
in ((5.54) and substituting corresponding y-values in (5.54]).
(¢ ). Applying the Fibonacci difference operator (5.1)) on (5.4) yields the relation

w(k) = 2ok + (=01, 0,—3)) + ~v(k + (—1, 0, —265))

~y x17y
_ [U(k + (=201,0,0)) + v(k + (=1 £ 05, 0)] - (1;;17)

v(k+(—£1,0,0))

—ﬁ[U(m(el,o,0))+v(k+<—3gl,o,o>)+v<k+(—z1i%,o>) .

T

The proof of (c) follows by replacing ki by ky — €1, ky — 20y, ..., ky — mly and k3 by
ks — U3, ks — 205, ..., ks — ml3 repeatedly and applying these in the above relation.

(d). By (5.1)) the equation ([5.4]) gives the expression

1
(k) = —v(k + (61,0, —L3)) + —=v(k + (61,0, —205))
Y 1Y

ol (261,0,0) o+ (a6, 0))] - L2 o

17y k—i_(glaouo))

— 22 [+ (301,0,0) +v(k+ (—41,0,0)) +v(k+ (1 £26,0))]
1
which yields (d) by replacing ky by ki + ¢1,k1 + 201, ....,k1 + mf; and k3 by

ks — U3, ks — 205, ..., ks — ml3 repeatedly. O

The following example shows that the diffusion rate of thin plate can be identified

if v(k) in (5.4)) is known and vice versa.
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Example 5.4.6. Suppose that v(k) = ef1+k2tks s g closed form solution of ,
then it is obvious to obtain

A ehrtheths — o[ N ehithaths o A ehitheths] yhich yields
z(0,¢3) z(f1,2) z(—f1,2)

{3 —2/03

1—z1e7 — 29e

. 5.5
4 — X (e& + e—h + etz + eféz) _ x2(62£1 + e—20 + e2t2 + 672@2) ( )

’Y:

For numerical verification, we give the MATLAB coding for (a) of Theorem .
Whenm =1, ki =1, 0 =1,k =2,y =2, 21 =1, 20 =2, k3 = 3, {3 = 3,
v(ky, ko, k) = etFrtketks) and ~ is as given in , the code is as follows:

((1.A1)./(1.028886517. A 1)). * exp(6 — (1. 3)) — (symsum((((—0.007221629292).
(1. A4))./(1.028886517. A (i))). * (exp(7T — ((i — 1). x 3)) + eaxp(db — ((i — 1). % 3)) +
(exp(8 — ((1 —1).%3)) +exp(d—((i —1).%3)))),7,1,1)) + (symsum(((2. x (1. A (i —
1)))./(1.028886517. A4)). % (exp(6 — (i +1). % 3)) + (0.007221629292. * ((exp(8 — ((i —

1).%3))+exp(d—((i—1).%3))+exp(10—((i—1).%3))+exp(2—((i—1).%3)))))), 4, 1, 1)).

For getting accuracy value of heat transmission, (5.1]) can be replaced by,

A v(k)=v(k) — z1v(k + (0,0, —/3))
2(0,43)

- Z'Qv(k + (O, 0, —263)) — .’ﬂg'l)(k + (0, O, —363)) (556)
In this case, the corresponding heat equation model becomes

A vk)=v A v(k); z=(x1,z213). (5.57)
m(O,ﬁg) $(:|:£1,2)

Theorem 5.4.7. Assume that there exists a positive integer n, and a real number

Uy > 0 such that v(k + (0,0, —nl3)) and A wv(k) = u (k) are known. Then,
x(ing) x(iel,Q)
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the heat equation (5.57)) has a solution v(k) of the form

v(k) = Fhv(k+ (0,0, —(n + 1)03)) + (xoFy 4+ 23F,—1)v(k + (0,0, —(n + 2)¢3))

+a3Fyu(k + (0,0, —(n +3)l3)) + 7 Y F, o )(k; + (0,0, —s03)), (5.58)
s—0 1,2

where Fy =1, Fy =z and F,, = x1F, 10 + x2F, 11 + x3F,.

Theorem 5.4.8. Consider the equation (5.57)). Then, the following four types

solutions of the equation (5.57)) are equivalent:

m

T U Y1
(a). 0(k) = = gyl o+ (0,0, =ms)) = 32 o (1_47) [1(k+(ﬂl,o,—(s—1)zg))
+o(k+(0, £65, }+ 3 %[v(m(o,o,—(sﬂ)&))
[0k + (£201,0, (s = 1)) + vk + (0, %265, (s — 1)63))] |
Y (13_147) [0+ (0,0, = (s +2)05)) = 7 [0k + (£301,0, (s = 1)6s))
+ ok + (0,430, —(s — 1)63))}}, (5.59)
(b). v(k) = C ;ﬁj)mv(/ﬁ(o,o, +mls)) + ﬁ_nj % [v(k + (££1,0, +s03))

my(1 — dy)s !
+v(k+ (0, xLy, ~|—s€3))] — Z:l %

[v(k—l— (0,0, (s —2)3))

Aok + (£201,0, 56)) + v(k + (0, £20s, seg))]]

mowg(1—dy)st

-S [0k + (0,0, (s = 3)43)
— Aok + (£301,0, 564)) + vk + (0, £30s, seg))]} , (5.60)

(c). v(k) = imv(k + (—mly,0,—mls)) + ril v(k + (—s1,0,—(s + 1)l3))

Y r17°
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5 sl (-sta, 0~ (s2)3)— 55 Tl (—s63,0,~(s-1)6)
_ f;l xfyil [v(k+(—(s—2)€1, 0, —(s—1)ls)+v(k+(—(s4+2)t1,0, —(s—1)l3))
Follet (=420, (5= 1)05))] - 3 [kt (= (5=3)1, 0, —(s—1)fs))

—1 Ty
(k

4ok + (—(s+3)00,0,—(s — 1)) + v(k + (—sby £ 30y, —(s — 1)@,))]

By 751_1 [0+ (= (54 1)02,0, ~(5= 1)) 0+ (51205, 0, (= 1)83))], (5.61)

(d). v(k) = %mm (mts, 0, —mls)) + zlm ok + (51,0, — (s + 1)03))
+ 35 I (53,0, ~(s+2)60)~ 35 S ol (4,0, (5 )
_ ’f 3319;_1 v(k+((5+2)01,0, —(s— 1)) +v(k+((s—2)01, 0, (s—1)¢3))

Folk+ (s 20, —(s—1)5))| - fj 2 o+ (s +3) 0, (5= 1))

175
to(k + ((s = 3)01, —(s — 1)) + v(k + (st £ 3Cs, —(s — 1)63))}

- [U(k (54 10,0, — (5 — 1)) + vk + (56 % fa, — (5 — 1)63))] (5.62)

Proof. The proof of this theorem is similar to that of Theorem [5.2.2 [

The following theorem focuses on heat equation formula with higher order

Fibonacci numbers.
Theorem 5.4.9. Four types of solutions of the equation (5.35)) are given by

Tk = (0,0,nl) — S 11

= m Z m {v(k = (££1,0,(s — 1)f3))



5. Fibonacci heat equation model 92

ol = (0., (5 = DN} + 35 { £ T olk = 020,54 (= D))

= Lozt (1 —4y)s
ok — (£l (s — 1)la,0)) + vk — (0, 210y, (s — 1)43))} } , (5.63)
b, o) = Lk 0,0,00))

i (1_1—47) [0k + (21,0, s5) + o(lk + (0, %0, 53))]
é {; <x—147)_1 (ol + (0,0, (s —r)t3))
vyl + (70,0, 563)) + v(k + (0, £y, szg))} } , (5.64)
(©.  ok)= %v(k _ (nly,0,nly)) — é) 751_1 [uk — (s + 11,0, (s — 1)t3))
Folk = (00,0, (s~ )8)] - z"; “x_w‘f”v(k (61,0, (s — 1)ty))

—z{z ot = (sta, o,0<s+<r1>eg>>]}

s=1 17

{zl Ik = (s — 1), 0, (s — 1)fs))

=2 (s= xlfys

n

+

+u(k — ((s +7)01,0,(s — 1)l3)) + v(k — (sly, £rls, (s —1)l5))},  (5.65)

(d). (k) = %v(k—l— (nfs,0, —nls)) — Zo 731 o+ (s +1)0,0,~(s = 1)83)
to(k + (sty,0,—(s — 1)@))} . % “;ﬂi V ok + (60,0, — (5 — 1)03))
_EQ {; m;_l [0+ (56,0, (s + (= 1)62))]}

v(k +((s =), 0, =(s = 1)ls))

=2 Ls=1 T17Y°

Fok + ((s+7)00,0,—(s — 1)) + v(k + (sty, £7ls, —(s — 1))} . (5.66)

Proof. The Proof is as similar as Theorem 5.2.2 O
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5.4.3 Fibonacci heat equation of medium

Heat equation model for medium is obtained by extending the theory of thin
plate with three variables into five variables k = (ky, ko, k3, k4, k5) where (ki ko, k3)
denote the point, and k4, ks denote the time and density of the medium. By (5.1])

and Newton law of cooling, the partial difference equation of medium is

A vk)=~v A wvk);, z=(r,m29), (5.67)
x(ls,5) x(£41,2,3)
where A = A + A + A + A + A + A ,(¢4,0) means that

z(£41,2,3) z(€1,0)  x(—£1,0) x(£2,0) x(—¥2,0) z(£3,0)  x(—43,0)

it" component is ¢;, remaining components are zero.

In general, (5.56) can be extended to m-tuple x = (x1, z, ..., ;) as

A v(k) = zv(k =€) — xv(x — 20) — ... — 2 v(k — ml)
z(£)

and ((5.67) becomes

A U(k) =7 A U(k)J T = (‘rlvx% 7xm) (568)
x(€4,5) x(££1,2,3)

Theorem 5.4.10. If A w(k)= u (k) are known, then
z(+L1,2,3) z(££1,2,3)

v(k) = Frppv(k —(0,0,0, (n 4 1)y, (n+ 1)5))

+ o Fu(k — (0,0,0, (n 4 2)ly, (n+ 2)05)) + VZ F, u  (k—1(0,0,0,sly,sls5))
s=0

z(+£1,2,3)

(5.69)

Proof. Argument similar to Theorem [5.4.9] gives the proof of (5.69). O
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Consider the following notations which will be used in the subsequent theorems:
v(k 4+ (£l1, %)) = v(k + (b1, %)) + v(k + (=L, %)),
vk + (£201, %)) = v(k + (201, %)) + v(k + (=201, %)),
v(k + (2 x4y, %)) = v(k + (ly, %)) + v(k + (Lo, %)),
v(k + (£20y, %)) = v(k + (202, %)) + v(k + (=203, %)).
v(k + (L3, %)) = v(k + (+L3, %)) +v(k + (L3, %)),
v(k + (£20s,%)) = v(k + (205, %)) + v(k + (=203, ).
v(k £ Lla23),%) = v(k 4+ Lazs), %) + ok —La2z),*),
v(k £2001,23), %) = v(k + 20123, %) + v(k — 201,23, *).
V(ky £ by, %) = v(ky + lo, %) + v(kg — {2, %),

V(ky &£ 20y, %) = v(ky + 209, %) + v(kg — 203, *).

Theorem 5.4.11. The equation (5.67) has solutions of the form

(a). w(k) = mv(k’s—l(o,o,o,m&,m&))
+o g B o [0k = (6,,0,0, (s = 1), (s = 1)05))|
- xﬂ _ 6 — s — 1)l
= 3 G (0l = (0.0, (s = Dt (s = 1))

+ou(k — (0, £05,0, (s — 1)ly, (s — 1){5))

+v(k — (0,0, %05, (s — 1)ly, (s — 1)45))}

m $2xg5_1)7

P et {v(k = (£261,0,0, (s — 1)y, (s — 1){5))
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+v(k — (0,4265,0, (5 — 1)y, (s — 1)l5))
+U(l€ - (07 0, :i:2£3, —(S — 1)64, —(S — 1)65)} , (570)

(b).  w(k) = mv(kz +(0,0,0,mly, mls))

x™m
L& m(l— GV)SAU

s=1 T°

(k+(0,0,0, (s — 2)ly, (s — 2)l5))

(00 + (201,62, b, 5L, 505))

3 ’U(k’ + (:t2£1, 62, 63, 864, 865) y (571)

(). w(k)= imv(k + (mty,0,0, —mly, —mls))

Y

430 (k4 (=560,0,0.~(s+ Da. (s + 1)65)
=5 781_1 ok + (= (s +1)01,0,0,— (s — )4, — (s — 1)é5))
—f-U(kJ + (—861, :l:gg, 0, —<S — 1)64, —<S — 1)65))
Fok 4 (—sl1, 0,405, —(s — 1)0s, —(5 — 1)55))]
_ é xﬁ—l [v(k F(=(s = 2)01,0,0, — (s — 1)y, — (s — 1)05)
+o(k+ (—(s+2)01,0,0, —(s — 1)y, —(s — 1)¥5))
to(k + (—sby, £205,0, —(s — 1)y, —(s — 1)05))
+o(k — sly,0, 4203, — (5 — 1)ly, — (5 — 1){5))

-y (1;76])11(/@ + (=501,0,0, — (5 — 1)y, —(s — 1)l5)), (5.72)

(). o(k) = %u(k 4 (mfs, 0,0, —méy, —mls))

+2

s=1 xlrys

v(k + (801,0,0, —(s + 1)ly, —(s + 1)¥5))
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-3 731_1 o(k + (5 + 1)61,0,0,— (s — 1)y, — (s — 1)(5))
—f-U(k + (861, :l:fg, 0, —(S - 1)64, —(S - 1)65))
ok + (s, 20,0, (5 — 14, — (5 — 1)05))

+U(l€ + (551, 07 :l:fg, —(S - 1)64, —(8 — 1)65))

Ppere [0k + (5 = 2)61,0,0,— (s = 1)y, —(s = 1)45))
Folk + (s +2)61,0,0, — (s — 1)y, —(s — 1)(5))
—f-U(l{? + (Sfl, :t?ég, 0, —(S - 1)54, —(S - 1)55))

ol + (51,0, 4205, —(s = 1), (s — 1)45))]

B i (1—67) [v(k 4 (501, — (s — 1), +(s — 1)i5)). (5.73)

TS
s=1 1y

Proof. (a). Expansion of (5.67)) directly generates the relation

I )
k) = k —ly, — k —204, —2
v(k) = gy Y+ (0,00, Lo, ~ls))+ 75wl +(0,0,0, =20, =245))
gk (,0,0,0.0) v (k+(0,£2,0,0,0)
ok + (0,0, £05,0,0)) — —20o(k + (£2£,,0,0,0,0))
(1-67)
+ 0k + (0, £265,0,0,0)) + vk + (0,0, £2¢5,0,0)). (5.74)

By replacing k3 by ks — {3, ks — 203, ..., ks — m{s in ([5.74]), we obtain the proof.
(b). The heat equation (5.67)) yields the relation
1—-6
(k) = %v(ls +(0,0,0, 64, 05) — %v(k +(0,0,0,—Cy, —05))
1 1

_I_,Y [U(k + (igla +€4a +€5)) + U(k + (O? ig?v Oa £4a 65))

+’U(k’ + (O, 0, :l:gg, 64, 65))
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+x;—7 w(k + (£201,0,0, 4, £5)) + v(k + (0, 2205, 0, 04, 05)
1

ok + (0,0, 2205, 44, £5))]. (5.75)

The proof of (b) follows by replacing ks by ks + €3, ks + 203, ..., ks + ml3 repeatedly
and substituting corresponding ~-values in ([5.75]).
(¢ ). A simple calculation on ([5.67)) gives the expression

1
v(k) = ~v(k + (—£1,0,0, s, —s)) + —2v(k + (—1,0,0, —2£4, —205))
8 1y
_ [v(k 4 (=201,0,0,0,0) + v(k 4+ (—01 £ £5,0,0,0)
Yok + (= = £5,0,0, 0))] = [v(k +(=30,,0,0,0,0))

X

+v(k + (—¢1,0,0,0,0)) + v(k + (=41 £2/,,0,0,0))

(1—067)
17y

+o(k+ (—zl,izeg,,o,o,()))} - ok — £1,0,0). (5.76)

The proof of (c) follows by replacing ky by ki — €1, k1 — 244, ..., ky — mly and k4 by
ky—Lly, ky — 20y, ..., ky —mly and ks by ks — U5, ks — 205, ..., ks — m/s repeatedly.

(d). (5.67) gives the expression
1
U(k) = ;/U(k‘l + (gla 07 07 _647 _65)) + ;_27@(]{? + (61, O, 0, —2€4, —265))
1
- [v(k(+2£1, 0,0,0,0)) + v(k + (€4 £ £2,0,0,0))

X2

Yok + (0 £ £5,0,0, 0))] - [M +(301,0,0,0,0)

o
+v(k + (€1,0,0,0,0)) + v(k + (€1 & 2¢5,0,0,0))

+u(k + (£, £2¢5,0,0, 0))} - %v(l{ +(£1,0,0,0,0)). (5.77)

The proof of (d) follows by replacing ky by ki + €1, k1 + 204, ..., ky + mfy and k3 by
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k‘4 + £4, /{34 + 2€4, ey k?4 + m€4 and ]{34 by ]C5 + 65, ]{35 + 265, ceey ]f5 + m€5 repeatedly. The

proof and verification are similar as the Theorem [5.2.2 O

Example 5.4.12. The following example shows that the diffusion rate of rod can

be identified if the solution v(k,ks) of is known and vice versa. Suppose that

v(k, ky, ks) = eFTFtks s q closed form solution of , then we have the relation
A ekthaths — ’Y[ A ekthaths LA €k+k4+kz5}7 which yields

0,02(x) £1(x) —{1(x)

Cancelling e¥+t*1+*s on both sides derives

Cl—m(et eh) —mg(e7 %)
7= 6 —z1(a+b+c)—22(2a +2b+2¢)’

(5.78)

where a = e +e 1 hb=e2 4 e c=eb + b,

For numerical verification, we give the MATLAB coding for (a) of Theorem[5.2.2)
Whenm =5, ki=1,0 =1,k =1,l=1,01=1, 2y =1, kg = ls = ky = {4 =
ks = U5 = 2, v(ky, ko, k3) = eF1HR2tk) and ~ is as given in (5.72)), the code is as
follows:

(((1.A5)./(1.076110962). A 5). % exp(8 — (2. % 5) — (2. %5))) + (symsum(((((1. % ((1). A
(s —1)))./(1.076110962). A s). * (exp(8 — (2. % (s + 1)) — (2. % (s + 1))))) — (1. A
s). # (=0.01268516))./(1.076110962). A 5). * (exp(9 — (2. % (s — 1)) — (2. % (s — 1))) +
exp(7—(2.% (s — 1)) = (2.% (s = 1)) +eap(9 — (2. % (s — 1)) — (2. (s — 1)) + exp(7 —
(2.5 (s —1)) = (2.% (s — 1)) +exp(10 — (2. (s — 1)) — (2. % (s — 1))) + exp(6 — (2. %
(s — 1)) = (2. % (s — 1))))) = ((((1. A (s = 1)). % (=0.01268516))./(1.076110962). A

s). % (exp(10 — (2.%x (s —1)) — (2. % (s —1))) +exp(6 — (2. % (s —1)) — (2. (s —1))) +
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exp(10—(2.x(s—1))—(2.%(s—1))) +exp(6— (2.x(s—1)) — (2. (s —1))) +exp(12—

(2.%(s—1)—(2.%x(s—1)))+exp(d—(2.%x(s—1)) = (2.x (s —1))))))), s, 1,5)).

For getting accuracy value of heat transmission, (5.1)) can be replaced by,

A ’U(k’, kg) = U(k?, ]{Zg) — xlv(k, ]{73 — 63)
12(0,(3)

— [IZ’QU(k, kg — 263)) — Zli'g?)(k, kg — 363) (579)
In this case, the corresponding heat equation model is given by

A vk k) =~v A vk, ke); x=(x1,29,23). (5.80)
z(0,43) x(ﬂ:(fl,fg))

As in the proof of Theorem [5.4.10 we get the following theorem.

Theorem 5.4.13. Assume that there exists a positive integer n, and a real number

Uy > 0 such that v(k,ks —nls) and A v(k,ks) = u (k,ks) are known.
z(£(£1,62)) z(£(41,£2))

Then, the heat equation (5.80) has a solution v(k, k3) of the form

U(l{?, ks) = Fn+1’U(k, kg — (TL + 1)63) —+ (.TQFn + .Tan_l)U(k, ]{?3 — (7’L + 2)63)

+asFou(k, ks — (n+3)ls) +9 > F el ))(k, kg — il3) (5.81)
i=0 1

where F() = 1, F1 =T and Fn = $1Fn+2 -+ IQFn+1 -+ l‘an.

Let us use the following notations in the below theorem:

v(ky 201, %) = v(ky+L01, %) +v(ky— 01, %), v(ky 2201, %) = v(k1+201, %) +v (kg — 201, %),
v(ky £ 301, %) = v(ky + 301, %) + v(ky — 301, %).

v(ky Ly, x) = v(ky+ Lo, %) +v(ky — o, %), v(k1 £20s, ) = v(k1+20a, %) +v(k; — 205, %),
v(k1 £ 30y, %) = v(ky + 3la, %) + v(ky — 3la, *).

The following theorem gives more accuracy values of heat transmission.
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Theorem 5.4.14. Consider the equation (5.80). Then, the following four types

solutions of the equation (5.80)) are equivalent:

(a). v(k) = ﬁv(m (0,0,0 — mly, mls))
+1 0 B 167) [ (k + (£61,0,0, —(i — 1)0s, — (i — 1)ts))
Ui 17 . .
-3 m{v(k F(£61,0,0, — (i — 1)y, —(i — 1)05))

Fv(k 4 (0, £0lo,0, = (1 — 1)y, — (i — 1){5))

+o(k + (0,0, %05, —(i — 1)0y, —(i — 1)55))}
m xgx(f % ; ;
_ lﬁ{w(lﬁ(i%l,o 0, —(i — 1)y, —(i = 1)¢5))

vk + (0, £205,0, — (i — 1)y, — (i — 1)¥5))

to(k + (0,0, 4204, — (i — 1)q, —(i — 1)@))}
(i-1)
l’

v - -
- Zl oo P Lok 4 (£301,0,0, (i — )4, (6 = 1)t5))

+v(k + (0,£305,0, —(i — 1)ly, —(i — 1){5))

4ok + (0,0, £305, —(i — 1)y, —(i — 1)55))}, (5.82)
). k) = <1;—6m7>mv(k +(0,0,0,mbs, mls))
_ ﬁ Ml;—f”ilv(/{ +(0,0,0, (i — 2)0u, (i — 2)05))

s 6T 0,0,0, = 8)0, (i — 3)6s))

1 1t

1 _ 6 2_1 . .
fy(xlTZ)) [U(k + (igla €27 €37 264, 7/£5))
z3y(1l — 6+)(~1)

i
1 T

|
NGERANGERN)

2

+

ol -+ (361, 0, 0, i, i)

.
Il

m _ (i-1)
Ly =) olk + (200,65, b, il i05)], (5.8)

xl
i=1 1
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1
(). wk)= Wv(k + (—ml1,0,0, —mly, —m/s)

+;fj1 20l (=i61,0.0,(i+ s, (i + 1)03)

+7f;1 ol (<i61,0.0, (i + 25, (i + 2)05)

_ 'T_nl Lok 4 (=4 1)61,0,0, — (i — 1), —(i — 1)03)

) Yok + (=it 20,0, (i — 1)L4, —(i — 1)0s))

ok + (it 0,3, — (i — 1)Ly, —(i — 1)65))

_ g;l xf;l [0k + (= = 2)£1,0,0,~(i = 1)ta, (i = 1))
ok (—(i +2)61,0,0,—(i — 1)y, —(i — 1)¢5))
+o(k + (—ily, £205,0, — (i — 1)ly, —(i — 1){5))
ok + (=i, 0, %205, —(i = 1)y, — (i = 1)(5))]

_ iml a;jj—l [0+ (=(i = 3)61,0,0,~(i = 1)t — (i = 1)45)
ok + (=(i 4+ 3)61,0,0,—(i — 1)y, —(i — 1)t3))
ok + (—ily, £365,0, — (i — 1)y, —(i — 1)05))
ok + (—ily, 0, £30, — (i — 1)y, —(i — 1)65))]

Y (1;1767)1)@ +(—il1,0,0,—(i — 1)0s, —(i — 1)L5)), (5.84)
@.  wk) = %v(k; + (b, 0,0, —mly, —mls))

+3 %v(l@(—kiél, 0,0, — (i + 1)y, — (i + 1)05))

+7f;1 S ob(it, 0.0, + 26, ~(i 4 2)65)

=30 L ok 4 (G4 1)6,0,0,— (i — 1)ts, —(i — 1)05))

i=1"7
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Proof. The proof

+’U(l€ + (igl, :tfg, 07 —(l - 1)£4, —(Z - 1)55))

ok + (i1, 0,05, — (i — 1)y, —(i — 1)55))]

B i xf;1 [”(k + ((2 —2)€1,0,0, —(1 — 1)y, —(i — 1){5))

+o(k+ ((1 4 2)01,0,0,— (i — 1)y, —(i — 1)45))
ok + (ily, £205,0, — (i — 1)y, — (i — 1){5))
+o(k + (ily,0, 2205, — (1 — 1)ly, —(i — 1)¢5))

1
i=1 17"

‘|"U(k’ + ((Z + 3)€1, O, 0, —(Z — 1)64, —(Z — 1)£5))

[v(k; 4 (6= 3)01,0,0, — (i — 1)y, —(i — 1)65))

+’U(k' + (Zfl, :l:3£2, O, —<Z - 1)64, —(Z - 1)€5>>

+U<k’ + (2'617 0, :i:ggg, —(Z - 1)64, —(Z - 1)£5))

~(1-6

s . Fy?)v(k‘ 4 (i01,0,0,—(i — )y, —(i — 1)ls)).  (5.85)
=1 1

of this theorem is similar to the proof of Theorem [5.2.2} O

Theorem 5.4.15. Consider ((5.67) and denote v(ky £ 1, %) = v(ky + €1, %) +v(ky —

gl, *),U(lﬁ + 261,

%) = v(ky + 201, %) + v(ky — 201, %) and v(ky £ 301, %) = v(ky +

301, %) + v(ky — 301,%). Then, the following four types of solutions of the equation

5.67) are equivalent: If A v(k) = v(k)—ziv(k—0)—xov(k—20) —...—z,v(k —nl),

z(0)

then the corresponding equation (5.68) has a solution of the form

(a). v(k) = mv(zﬁ —(0,0,0,nly, nls))
no oyt
-% m{v(k — (461,0,0, (s — 1), (s — 1)f5))
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+v(k — (0,%£05,0, (s — 1)ly, (s — 1)l5)) + v(k — (0,0, L3, (s — 1)ly), (s — 1)&:,))}

n xrxls_l

+:2 { =6 [“("“ —(0,0,0, = (s + (r = )lu, (s + (r = 1))05))

—yu(k — (£7€1,0,0, (s = 1)ly, (s — 1)5)) +v(k — (0, £7s,0, (s — 1)y, (s — 1){5))
4ok — (0,0, £rl, (s — 1)y, (s — 1)55))] } (5.86)

(b).  w(k) = u;—?)nv(k +(0,0,0,nly,nls))
_ 2= 6

s=1 X1

[v(k + (£01,0,0,+50s, +505))

s—1

—f-U(l{? + (07 :tfg, 07 +8€47 +S€5)) + U(]C + (O, 07 :tfg, 8£4, 8£5>>

m n l'r(l _ 6")/)8_1
-3 { e L
r=2 ‘ s=1 €

[v(k: +(0,0,0, (s — )la, (5 — 1)05))

—yu(k + (£r61,0,0, 48y, +505)) + v(k + (0, £1ls, 0, sly, +505))

+o(k+ (0,0, £r0y, sly, 365))} } (5.87)

(©). (k)= %v(k + (—nby, 0,0, —nly, —nls))
_ f: 1

a ’787 U(k’ + (—(S + 1)51, 0, 0, —(S — 1)€4, —(S — 1)€5))

1

+v(k + (—sly, £05,0, —(s — 1)ly, —(s — 1)¥5))
ok + (—sb1,0, 205, —(s — 1)0s, —(s — 1)55))]

_ Zi: (1;—;17)1)(]{; + (—561, 0,0, —(S — 1)54, —(S - 1)65))

m n

= [ (=5 = 1), 0,0, (s = 1), (s = 1))

r=2 - s=1 L17

+ou(k+ (—(s+7)01,0,0,—(s — 1)y, —(s — 1)¥5))

+vu(k + (—sly £1ly,0,—(s — 1)ly, —(s — 1)l5))
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Yok + (—sliE, 0,705, —(s — 1)y, —(s — 1)45))}

+ é {Z: ;j;sv(k: + (—501,0,0, = (s + (r — 1))y, —(s+ (r — 1))45))} ,
(d). v(k) = %v(k + (nf1,0,0, —nly, —nls))

U(k(+(3 + 1)61, 0, 0, —(S — 1)£4, —(S — 1)£5))
+ v(k(+sly, £,0, —(s — 1)y, —(s — 1){5))

+ v(k(+s1,0,tl3, — (s — 1)ly, — (s — 1)5))

n (1 -69)
s=0 I17°

v(k(+s01,0,0,—(s — 1)y, —(s — 1){5))

-5 { Lo [v(k(+(s )01, 0,0, —(s — 1)y, —(5 — 1)155))]
+o(k+ (s +7)01,0,0, —(s — 1)y, —(s — 1)¥5))
+o(k + (st £1le,0,—(s — 1)ly, —(s — 1){5))

+v(k + (sl1£,0,1ls, —(s — 1)ly, — (s — 1)55))}

s=1 17

—l—i{i xrsv(k—F(S&,O,O,—(S—G—(T—1))64,—(34_(7«_1))&))}'
+'U(k1_(i+T)£1,k2,k3—(i—1)63)4—’(}(]{1—@[1,]@:&7%2’]{3_(Z'_l)gg)}' (588)

From our derivations and findings, we conclude that in order to introduce several

factors in the heat flow, we have to select proper value for m and x = (z1, z2, ..., T.n)

depending on the climate of heat flows which will give exact solutions.



Chapter 6

IVP of Heat Flows in

Non-homogeneous Materials

6.1 Introduction

This chapter provides solutions of the initial value problem of heat flows of
non-homogeneous materials. The methodology of induction is employed to guide
us reach the destination. With Newton’s law of cooling as the basis, the equation
for heat transfer of the rod made of four different materials is formulated as the
preliminary case. The solution arrived at for the above problem is generalized for
the case of the rod with multiple materials. The results put forth in this book work

are validated by numerical examples.

105
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6.2 IVP of non-homogeneous materials

Consider a rod of non-homogenous materials with parameters kq, ko, ¢ and /5.
Let ¢, {5 be the shift values of k; and ko respectively. Let v(ji, j2) be the temperature
at the initial position j; and at initial time j, and «(k;) be the heat conductivity
of rod at k;. Non-homogeneous materials are introduced by «(k). Since the rod is

non-homogeneous materials, the corresponding heat equation can be expressed as

U(k’l, ]{32) = O[(k’l—gl)l)(kl—gl, k2—€2)+a(k:1)v(k:1, kg—gg)—f—&(lﬁ—f—gl)v(k}liéh kg—gg).

(6.1)
The equation can be rewritten as
v(k1, ko) = a(k))v(ky, ke — lo) + a(ky £ 01)v(ky £ 01, ko — £). (6.2)
Theorem 6.2.1. With usual notations, has a solution of the form
v(ki, ko) = " (ky)v(ky, j2) + nz_l o Pa(ky £ O)v(ky £ b, o + sb). (6.3)
s=0

Proof. Replacing ky by ko — £5 in gives

v(ky, ko — o) = alky)v(ky, ke — 20s) + a(ky £ 1) v(ky £ 01, ko — 205).

From ,

v(k1, k) = & (ky)v(ky, ka—20y) 4o (k101 v (kb ko—205)+a(ky£0, v (kL1 ky—0y).
(6.4)

Replacing ko by ko — 205 in (6.4) gives

’U(l{?l, k’g — 262) = Oé(kl)’(](kfl, k’g — 362) + a(k‘l + fl)’U(l{?l + gl, ]{?2 — 362)
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U(k’l, kQ) = a3(k1)v(k1, kQ — 3£2> + Oéz(kl :l: El)v(kl + 61, kg — 3€2)
+ O[(k?l + gl)U(kl + 61, k?g - 2€2) -+ Oé(]{fl + £1>’U(1€1 + 51, 1{32 - EQ) (65)

In general, we arrive at

w(kr, ka) = a® (ke )o(kr, ks — nts) + f’;l 0=k + 0 )o(ky £ £, ks — gla).
e

By taking ks — nfy = 75, the above relation becomes

vk, ks) = o (kyo(kr, ja) + qil 0t la(ky + 0ok £ 1, o+ (n— g)la),

by taking n — s = ¢, which is same as the solution. O

The following example illustrates of Theorem [6.2.1

Example 6.2.2. Consider (6.5)), it can be expressed as

ki, ko) = " (k1)o(kr, o) + Yo" Palky £ 0)o(ky £, ja+ (s — 1)l),  (6.6)

s=1

where ko = J5 + nls.

Ifn =1, then becomes v(ky, ko) = a(ky)v(ky, jo) + a(ky £ )v(ky £ ¢4, j2) and

(k1 g2 + fa) = a(kr)v(k, g2) + [a(ky + Gk + 6, J2) + alky — G)v(k — £, J2)] -
(6.7)

If n =2, then becomes

v(ky, ko) = o®(ki)v(ky, jo) +a(ky)a(ky 201 )v(ky £ 41, o) +a(ky £ 0 )v(ky 4y, jo+Lo)

and hence we have v(ki, ja + 20s) = o?(k1)v(ki, J2)

+ a(ky) [a(ky + L) v(ky 4 €1, J2) + a(ky — )v(k — 41, j2)]

+ [a(ky + £1)v(ky 4 £y, jo + L) + a(ky — £1)v(ky — L1, 2 + £2)] . (6.8)
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Similarly if n = 3, we can have
v(ky, ko) = a3 (k)v(ky, Jo) + o (k1) a(ky & €)v(ky £ €1, jo)
+ a(ky £ 6)v(ky £ 0, g2 + o) + a(ky £ 04, ja + 20s), which gives
v(ki, jo + 3la) =’ (kn)v(k1, j2)
+ a?(ky) [a(ky + G)v(ky + 01, j2) + (ks — €1)v(ky — 44, ja)]

+ akr) [a(kr + C)v(ky + b, jo + Co) + a(ky — C)v(ky — 0, g2 + 62)]
+ [au(ky 4+ C)v(ky 4 £y, Jo + 202) + a(ky — L)v(ky — £y, Jo + 203)] . (6.9)

Example 6.2.3. To find the conductivity rate a(ky),a(ky + €1), a(ky — ¢y1), for
example consider the initial values given at ky, ki + €1, ky — €1 as given below:
v(ky,72) = 1, v(ky + 01, Jo) = 2, v(ky — l1,j2) = 3, v(ky + {1, J2 + ls) = 4

v(ky — 0y, Jo + le) =5, v(ky + {1, jo + 202) = 5.5, v(ky — 1, jo +205) =6

v(k1, 2 + lo) = 2, v(ky, jo + 203) = 3 and v(ky, jo + 302) = 4.

Let, a(ky) = zg, a(ky + 01) = x1, a(ky — b)) = 22
16.7) = z0(1) + [21(2) + 22(3)] = 2 = 2o + 221 + 322 = 2. (6.10)

(6.8) = z2(1) + xo [21(2) + 22(3)] + [71(4) + z2(5)] = 3

= 3:(2) + 2x0x1 + 3T07 + 411 + D10 = 3
= xg [xo + 221 + 3xa] + 421 + Bxe = 3 = 219 + 4x1 + S = 3. (6.11)

6.9) = x3(1) + 25 [£1(2) + 22(3)] + 20 [£1(4) + 22(5)] + [21(5.5) + 72(6)] = 4

= x + 22371 + 3xiT9 + 4071 + BTTe + 5.5 + 619 = 4
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= 1o [23 + 2w071 + 31072 + 471 + Bo) + 5.571 + 61y = 4
Solving the above equations, we get xo =1, 1 = —2, xg = 3.

Example 6.2.4. Consider the parameters in heat flows, let v(ky,j2) be the initial
temperature at the initial time jo at position ki of a long rod.
(i.e) v(j1,J2),v(j1 + l1,72),v(j1 + 201,72),v(j1 + 31, 72),...,v(j1 + pl1,J2) be the
temperature at initial time js.
Let us assume that initial values be
v(j1,72) = v(j1 + L1, 52) = v(j1 + 201, jo) = ... = v(j1 + ply, Jo) = 1.
If n =4, we arrive at
v(ky, jo + 40s) = o (ky)v(ky, J2) + Sz: a" S (ky)a(ky £ 0)v(ky £ 4, o + (s — 1)4y)
=at(ky)v(ky, jo) + a3 (ky)a(ky & €1)v(ky & 41, jo)
+a?(ky)a(ky £01)v(ky £, jo+ lo) + a(ky)a(ky £ 41)v(ky £ 04, jo+ 205)
+ alky £ 6)v(ky £ 44, jo + 305).
As, we assume ji as initial values, then
v(j1, Ja + 4la) = o*(j1)v (1, J2)
+a’(j1) [a(i + G + 4, J2) + a(ji — G)o( — 4, )]
+a?(j1) [a(i + G + b, Ja + G) + a(i — ()v(ji — b, o + £2)]

+ () [a(js + €)v(j + b, Jo + 20) + o — €)v(jr — b, 2 + 205)]

+a(ji + G)v( + 41, Jo + 3le) + a(ji — £)v(jr — b1, 2 + 30s). (6.13)
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From , we find

v(jr, Jo + €2) = 0+ a(fi)v(ji, j2) + (i + l)v(Gr + 41, J2)
=zo(l)+21(1) =20+2,=3-2=1

(i). v(jr+L, JatL2) = a(ji)v(dr, J2) +a(ii+0)v(ji+, j2) +a(ji+26)v(ji+26, ja)
=29+ +29=3—2+4+1=2.

(i). v(j1—"L, jotL2) = a(j1—201)v(j1 =201, j2) +a(jr— 1) v(j1— L1, J2) +a (1) v (1, o)
=04+0+29=23.
(iti). v(j1 + b1, J2 + 202) = a(j1)v(j1, J2 + b2) + a(jr + L)v(jr + b1, J2 + o)
+ a(ji + 260)v(j1 + 201, Jo + Lo)
v(j1 + 201, jo + lo) = a(ji + £1)v(jr + b1, J2) + a(jr + 200)v(j1 + 264, j2)
+ a(j1 + 301)v(j1 + 301, 72)
=x1+r9+290=3—-24+1=2
=x0(1) +21(2) + 22(2) =3 -4+ 2= 1.
(iv). v(j1 — b1, jo + 202) = 04 0+ a(j1)v(j1, ja + £2) = xo(1) = 3.
(v). v(jr + b1, g2 + 3l2) = a(j1)v(jr, g2 + 202) + a(ji + C)v(j1 + 41, j2 + 205)
+ a(g1 + 200)v(j1 + 201, 5o + 205)
v(j1,J2 + 202) = 0+ a(j1)v(j1, jo + C2) + a(ji + €1)v(j1 + b1, o + C2)
=ap(1) +2:(2) =3 -4 =1
V(g1 + 201, jo + 205) = a(j1 + G)v(j1 + b1, J2 + 2) + a1 + 201)v (g1 + 204, jals)
+a(jy + 30)v(j1 + 301, jo + £o)

(a). v(j1 + 301, ja + l2) = (g1 + 201)v(j1 + 201, jo) + (g1 + 301)v(j1 + 341, J2)
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+a(gy +46)v(j1 + 441, 2)

= 25(1) + 2o(1) + 21 (1) =143 -2=2
V(1 4201, jat o) = 21(2) +22(2) +20(2) = (=2)(2)+(1)(2)+(3)(2) = —4+246 = 4
V(j1 + 01, ja + 3ly) = wo(—1) + 21 (1) + 22(4) = =3 =2+ 4 = —1.
(vi). v(j1 — b1, o + 302) = 0+ 0+ a(ji)v(j1, j2 + 205)

— 2o(—1) = 3(~1) = —3.

(6-13) = v(jr, ja + 4b2) = 25(1) + 2§ {21 (1) + 22(1)} + 2§ {1(2) + 22(3)}

o {1(1) + 22(3)} + 21 (—1) + 22(—3)

=3+ 3(—24+1)+3*(—4+3)+3(-2+3)+2—-3=47

Similarly, we are able to find the heat temperature v(jy,ja + ¢f2) of the given
material by using the temperature at initial time j, with the three conductivity rate

O[(k’l), a(k‘l + 61) and O[(k’l — 61)

Example 6.2.5. Consider the equation , to find v(ji + ply, j2) :
6-13) = v(j1, j2 +4ba) = &*(j1)v (41, J2)
+a®(j1) [a(ir + 6)v(G + b j2) + a(ir = G)v(i — 6, o)
+a?(j1) [a(i + ) v + br, o + £2) + a(ji — £)v(Gi — b1, 2 + £)]
+ a(jr) [a(r + €)v(jr + b, Jo + 202) + (g — L))o — b1, Jo + 205)]
a1 + €)v(j1 + 1, jo + 3le) + oy — L) v(jr — {1, jo + 3ls)
Now replacing ji by ji + {1, we find

v(j1 4 b1, J2 + 4l) = o*(j1 + 1)v(j1 + £1, Ja)
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+a3 (g1 + 01) [a(ji + 200)v(j1 + 201, j2) + (1) v (1, J2)]
+a? (g1 + 0) [a(jr + 20)v(j1 + 201, Jo + b)) + a(j1)v(j1, Jo + £2)]

+a(gr + G) [a( + 206)v(51 + 261, jo + 205) + a51)v(j1, J2 + 265)]
+ Oé(jl -+ 261)7)0’1 —+ 261“7'2 -+ 362) —+ Oé(j1>v<j1,j2 + 3€2) (614)

= 21(1) + 23 (22(1) + 20(1)) + 2} (22(2) + 20(1))
+x1(9(4) + wo(—1)) + 22(14) + 20(—5)

=16+ (—-8)(1+3)+4(2+3)+(-2)(4—3)+14(1) - 15=1.
Replacing 71 by 71 + 205 in (6.14) yields
v(j1 + 201, Jo + 4ly) = a*(j1 + 201)v(j1 + 201, Jo)

+a?(j1 + 261) [a(g1 + 36)v(j1 + 31, j2) + a(jr + L)v(j1 + b1, J2)]
+a?(j1 4+ 201) [l + 36)v(j1 + 31, Jo + C2) + a(Gi + G)v(ji + b1, j2 + £o)]
+a(gy + 261) [o(gr + 3G)v(j1 + 301, g2 + 262) + a1 + €1)v(jr + b1, G2 + 205)]

+a(ji +20)v(jr + 261, j2 + 302) + a(j1)v(d1, J2 + 3la)
(i). v(j1 + 30y, jo + 3ls) = (g1 + 201)v(j1 + 201, Jo + 205)
+a(g1 + 30)v(j1 + 301, J2 + 202) + a(j1 + 461)v(j1 + 441, jo + 205)
v(j1 + 401, jo + 205) = a(j1 + 301)v(j1 + 301, Jo + o)
+a(gy + 40)v(j1 + 461, Jo + €2) + a1 + 501)v(j1 + 5ly, jo + £2)
v(j1 + 501, jo + €2) = a(j1 + 401)v(j1 + 441, 52) + a(jr + 501)v(j1 + 51, Jo)

+a(j1 + 601)v(j1 + 604, ja) = 2

v(j1 + 40y, jo + 205) = 20(2) + 21(2) + 22(2) = 4
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v(j1 + 301, jo + 3l3) = x2(4) + xo(4) + 21(4) =8
v(j1 + 201, Ja + 4lz) = x5(1) + 23 (20(1) + 21(1)) + 25(20(2) + 21(2))
+x9(20(4) + 21(1)) + 20(8) + 21(—1)

=1+183—-2)+1(6+2—-2)+ (12— 3) + 24 + 2 = 40.

Replacing ji by ji + 30 in (6.14]) gives

v(J1 + 3y, Jo + 4ba) = *(j1 + 30)v(j1 + 31, J2)

+a3 (g1 + 301) [a(gy + 40)v (g1 + 40y, Jo) + (g1 + 200)v(j1 + 261, j2)]

+a?(j1 + 301) [a(jr + 46)v(j1 + 401, ja + Co) + a(j1 + 201)v(j1 + 201, j2 + £2)]

+a(ji + 364) [a(gr + 40)v(1 + 401, ja + 265) + (g + 201)v(J1 + 261, 2 + 205)]

+a(jy + 40)v(j1 + 401, jo + 3) + a(fr + 26)v(j1 + 261, jo + 3Cs)

(i). v(j1 + 40y, jo + 3l2) = a(j1 + 301)v(j1 + 301, jo + 2(5)

+a(g1 + 400)v(j1 + 40y, jo + 205) + ajy + 501)v(j1 + 51, Jo + 205)

v(g1 + 5l jo + 20s) = a(jy + 401)v(j1 + 441, Jo + £5)

+a(jr + 501)v(j1 + 5y, jo + €o) + a(j1 + 6€1)v(j1 + 601, ja + 2)

v(j1 + 601, jo + lo) = a(j1 + 5l1)v(j1 + 501, j2) + aji + 641)v(j1 + 641, jo)

+a(jy + T0)v(j + Ty, ja) = 2

v(j1 + 501, jo + 205) = 11(2) + 22(2) + 20(2) =4

v(jr + 401, j2 + 302) = 22(4) + o(4) + 71(4) =8

V(g1 + 30y, Jo + 4la) = z3(1) + 23(21(1) + 22(1)) + 22(21(2) + 22(2))

+xo(z1(4) + 22(1)) + 21(4) + x2(14) = 30.

In the similar way, we are able to find the temperature v(j; + ply, jo + ql2).
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6.3 IVP of rod made of four non-homogeneous

materials

Consider a rod of non homogenous materials with parameters kq, ko, £1 and #s.
Let ¢4, {5 be the shift values of k1 and ks respectively. Let v(ji, j2) be the temperature
at the initial position j; and at initial time j, and «(k;) be the heat conductivity
of rod at ky. Since the rod is non-homogeneous materials, the corresponding heat
equation can be expressed as
v(ky, ko) = aky — 201)v(ky — 201, kg — b)) + a(ky — by)v(ky — 1, ke — £3)

+a(ky)v(ky, ko — b)) + alky + b)v(ky + b, ko — £3),

which can be expressed as

U(k’l, ]CQ) = oz(k:l)v(kl, 1{72 — €2> + Oé(k'l + gl)U(kl + 61, kg — 62)

+ Oé(kl — 261)1](]51 - 261, ]{32 — 62) (615)
Theorem 6.3.1. With the usual notations, equation (6.15) has solution
v(ky, jo + nlz) = (ki )v(ki, J2)
n—1
+ Z Ofnilis(kl){@(kl + El)’l}(k’l + gl,jg + Sﬁg) + Ck(kl — 261)1)(]{31 — 2£1,j2 + S£2)
5=0

(or) v(ki, k2) = " (kr)v(ky, j2) + > a" (k) {a(ky £ 4)

s=1
v(ky £ 01, Jo + (s — D)l) + a(ky — 201)v(ky — 201, jo + (s — 1)l3) }. (6.16)

Proof. Replacing ky by ko — 5 in gives

V(ky, ko — 0o) = a(ky)v(ky, ko — 209) + aky £ 01)v(ky £ 0, ko — 205)

+Oz(k'1 — 251)’0(/{31 — 261, ]{?2 — 62)
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From (6.15)), we arrive
U(k’1, ]{32) = Oé2(k‘1)U(k’1, k’g — 262) + a(k‘l)a(kl + El)v(k‘l + El, k’g — 2€2)

+Oé<k1)0&<]€1 — 2€1>U(k'1 — 261, kz — 262) + a(k1 + 61)1)(]{1 + gl, kg — 62)
+ O((]{Jl — 261)1](]51 - 261, ]{32 — 62) (617)

Replacing ko by ko — 205 in gives
v(ky, ko — 20y) = alky)v(ky, ke — 30s) + a(ky £ 1)v(ky £ 01, ko — 303)

+a(ky — 20)v(ky — 201, ko — 305)
v(ky, ko) = a3 (k)v(ky, ko — 30) + a2 (ky & 0y)v(ky & £y, ky — 305)
+a?(ky)a(ky — 20)v(ky — 201, ko — 3ly) + a(ky)a(ky £ 0y)v(ky £ 0y, ke — 205)
va(k)alks — 200k — 200, ks — 265) + alky £ 6)v(ky £ 01, ks — o)
+a(ky — 20))v(ky — 201, ko — £s).

In general, v(ky, ko) = " (k1)v(k1, ke — nls)

+ i ad  a(ky £ 0)v(ky 0y, ke — qly) + a(ky — 26)v(ky — 204, ke — qly)] .
- (6.18)
By taking ks — nfy = j5 in becomes
v(ki, k2) = o™ (k1)v(ky, j2)
F 3t Halky 00 ok £, o+ (n—q)la) +alk — 20 )0(ky — 261, o+ (m—q)a)}.

q=1

Taking n — s = ¢, which is same as above equation. O
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Corollary 6.3.2. Consider the particular cases forn = 1,2 and 3.
(1). If n = 1,v(k1, ja + la2) = a(kr)v(ki, J2)
—+ [Oé(k’l + gl)U(kl + gl,jg) + Oé(/ﬁ — 261)1)(]{1 — 261,‘7'2)] . (619)
(ii). If n = 2,v(k1, jo + 20s) = & (k1)v(ky, J2)
Fa(k){alky £ 0)v(ky £ 01, ja) + ok — 200)v(ky — 201, 52) }
+ Oé(/ﬁ + 51)’0(1{31 + gl,jQ + gg) + Oé(/ﬁ — 261)7](]61 — 261“7'2 -+ 62) (620)
(iii). If n = 3,v(k1, ja + 3l2) = o (ki)v(k1, j2),
+Oé2<k1){04(k1 + El)v(/ﬁ + gl,jg) + CY(kl — 261)1)(]{1 — 261,]'2)}
+ Oé(kl){Oé(kl + €1>U<k1 + gl,jg + 62) + Oé(kl — 2£1)U(k’1 — 261,‘]'2 + 62)}
+{alks £ 0)v(ky £ 00,52 + 20) + alky — 20)v(ky — 201,52 + 265) ). (6.21)
(ZU) [fn = 4,U<k1,j2 + 362) == Oé4<k’1)'11(k1,j2>
+ o (k) {a(ky £ )v(ky £ 01, jo) + (ks — 200)v(ky — 261, j2)}
+ a? (k) {a(ky £ )v(ky £ 4y, o + bo) + a(ky — 201)v(ky — 204, jo + 02)}
+ oz(kl){oz(kl + €1>U<k'1 + €17j2 + 262) + Oé(kl - 261)7)(/{31 — 2£1,j2 + 262)}
+ {Oé(k’1 + 61)1)(]{31 + el,jg + 3£2) + Oz(k:l — 2€1)U(k1 — 2f1,j2 + 3@)}. (6.22)

Example 6.3.3. To explain how to find the conductivity rate a(ky),a(ky + 1),

alky —01), a(ky —2¢y), consider the assumed values given below at ki, ki + {1, ky — {4

v(ky,j2) =2, (k1 + 01, j2) = 1, v(k1 — {1, j2) =2, v(ky — 201, j2) =4
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V(ky 4+ b1, jo + 0a) =3, v(ky — L1, Ja + lo) =2, v(k1,jo+ ls) =4

v(ky — 201,50+ 0y) =4, v(ky + 01, jo +205) =4, v(ky — 01, jo +205) =3
0(ky, o + 205) = 5, v(ky — 201, jo + 205) = 6, v(ky + l1, jo + 3ls) = 5
v(ky — 01, jo + 3ls) = 6, v(ky, Jo + 3l3) = 6, v(ky — 201, jo + 303) = 5.

Let, Oé(kl) = Ty, Oé(kl +€1) = T, Oé(kl — 51) = T2, Oz(k’l — 261) = I3

620 = 213% + X9 [131 + 229 + 41’3] 4 321 + 229 + 43 = 5,

which gives xq [2xg + x1 + 229 + 4ws] + 3wy + 229 + 423 =5

= 4x¢ + 311 + 229 + 423 = 5. (6.24)

(6.21) = 223 + 22 [11 + 225 + 4w3) + 20 [321 + 279 + 43) + 42y + 329 + 623 =6

which gives xq 223 + 1oy + 2w0T2 + 42073 + 371 + 239 + 4a3] + 42 + 379+ 623 = 6

(6.22) = 22 + x} [11 + 225 + 4w3) + 22 [3x1 + 219 + 4x3) + 30 [471 + 379 + 613]
+5$1+4$2+5$3 =7

To 223 + 2iry + 20379 + dadT3 + 31170 + 23970 + 47370 + 471 + 379 + 63

4+ bx1 4+ 4x9 4+ brg =7 = 629+ dx1 + 429 + D23 = 7. (626)

Solving the above equations, we get xq =

Do | Ot

;331:—275172257953:0-
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Example 6.3.4. Assume that v(ky, j2) be the initial temperature at the initial time
J2 at position ki. To understand the initial value problem, for example assume that
initial values v(jy,J2) = v(j1 + 01, jo) = ... = v(j1 + pl1,J2) = 1.

For the case n =5, v(ky, ko) = " (k1, J2)

sfll{a(kl £ 0)o(ky £ 40, j2 + (s = D)le) + (ks — 26)v(ky — 201, 52 + (s — 1)62)}

v(ky, j2 + 5ls)

(i). 0o + o) = 20(2) + 21(2) + 22(2) + 75(2) = 2.

(i1). v(j1 + 01, jo + 2) = 21(2) + 22(2) + 23(2) + 20(2) = 2.

(111). v(j1 — b1, jo + €2) = x2(2) + 20(2) + 23(2) + 21(2) = 2.

(). v(j1 — 201, jo + la) = x3(2) + x2(2) + 1(2) + 20(2) = 2.

(v). v(j1+Ll1, jo+20) = 23(2)+x123(2) + 2120 (2) +2122(2) +23(2) +2372(2) + 2371 (2)
+x320(2) + 20(2) 4+ 23(2) + 2270(2) + 2273(2) + 2371(2)
:8+O—10—2+0+O+0+0~|—5+%4—;—1—0—2:2.

(vi). v(j1 — b, jo + 205) = V(ji + L1, jo + 205) = 2.

(vii). v(j1—201, jo+202) = 23(2)+x2w3(2) +2123(2) +xox3(2) +22(2) +27(2) + 2321 (2)
+2120(2) + 2122(2) + 22(2) + 2120(2) + T270(2) + 2320(2)
:9—12—10—{—%—}-;:2.

(viii). v(j1 + l1, J2 + 302)

(a). v(j1,j2 + 202) = 23(2) + Tox1(2) + T220(2) + To23(2) + 71(2) + 72(2) + 23(2)
:1+0—4+0—10+§+g+0—2:2.

(b). v(j1+20, jo+205) = 23(2)+x322(2)+2371(2)+ 2023 (2)+22(2) 421 (2)+20(2) = 2



6. IVP of Heat Flows in Non-homogeneous Materials 119

v(j1 4+ b1, Jo + 3ls) = 23(2) + 2w3(2) + 2o} (2) + 2i72(2) + 2123(2) + T120(2)
b 2120(2) + 5(2) + 22(2) + 20(2) = 2.
Finally, v(j1, ja+502) = x§(2)+xir1(2) + 2522 (2) + 2023 (2) + 23 [21(2) +22(2) +23(2)]

+a§[r1(2) +22(2) +23(2)] +20[21(2) +22(2) + 23(2)] +21(2) + 12(2) +23(2) = 2.

6.4 IVP of heat flows of n-non-homogeneous

materials

Since the rod is non-homogeneous materials, the corresponding heat equation of rod
made of four materials can be expressed as

’U(k’l, k’g) = a(kl)v(kl, k‘g — fg) + Oé(k?l + El)v(k‘l + fl, k2 — fg)
+ Ol(kl + 261)1)(]{1 — 261, k’g — 62) (627)

Theorem 6.4.1. The solution of initial value problem of heat equation of rod made

of four non-homogeneous materials is given by

n

U(kl, kQ) = Oén(k1>’l}<k1,j2) + E an—s(kl)

s=1

{Oé(l{fl :l:gl)’l}(k’l igl,jg + (S - 1)62) + Oé(k?l + 2£1)’U(k’1 + 261,j2 + (S - 1)62)} (628)

Proof. Replacing ko by ks — f5 in (6.27]) gives
U(k’l, ]{32 — 62) = O[(k’l)l)(kl, kg — 2€2) + Oé(k’l + €1>U<k31 + 617 k?g — 252)

—|—Oz(k’1 + 261)’0(/{31 — 261, ]{?2 — 62)
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From (6.27), v(k1, ko) = o (k1)v(ky, ko — 265) 4+ a(ky)a(ky £ €)v(ky £ €y, ky — 205)

—|—Of(k‘1)0&(k’1 + 251)21(]{71 + 2€1, k‘g — 2€2) + Oé(k’1 + gl)’U(k‘l + El, k‘g — EQ)
+a(k1 :*:261)1}(]{1 :|:2€1,k’2 —62) (629)

Replacing ko by ko — 205 in gives
V(ky, ko — 205) = a(ky)v(ky, ko — 30) + a(ky £ 01)v(ky £ 01, ko — 305)
ks £ 20)0(ky = 201, ks — 30s),
which yields v(ki, ko) = o3(ky)v(ky, ke — 3ls) + a2 (ky £ 01)v(ky & €1, ko — 305)
+a?(ky)a(ky £ 201)v(ky £ 201, ke — 302) + (k) (kg £ 1)v(ky & 01, ko — 205)
+a(ky)a(ky £ 200 )v(ky £ 201, ko — 205) 4+ (kg £ €)v(ky £ 01, ko — £3)
+a(ky £ 20))v(ky £ 201, ko — £5).
In general, v(kq, ko) = " (ky)v(ky, ko — nls)
4 il 0t fa(ky £ 0)o(ks = £, ks — qls) + alky + 200)0(ky + 201, ks — gs)]
=
By taking ky — nly = 75, we have

v(ky, ko) = a”(ky)v(k1, jo)

+Z o’ Halki£6)v(ki £, 2+ (n—q)ls) + (ki £26)v(k £200, o+ (m—q)la)}.
q=1

(6.30)
Taking n — s = ¢, which is same as above equation,

v(ky, ja + nls) = a”(k1)v(ky, j2)

n—1

+ Z Oénilis(k’l){a/(k‘l iﬂl)v(lﬁ + el,jg + Sﬁg) + O./(kfl + 2€1)U(k’1 + 2£1,j2 + SEQ). OJ
s=0
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Theorem 6.4.2. The solution of initial value problem of heat equation of rod made

of m non-homogeneous materials is given by

m

U(kl, kQ) = Oén(k1>’l}<k1,j2) + Z an_s(k1>

t=1

{Oé(k’l :I:tﬁl)v(kl :l:t‘gl,jz + (S - 1)62) +Oé(l€1 i%l)v(/{:l + 261, jQ + (S - 1)62)} (63].)

Proof. The proof is similar to the proof of Theorem [6.4.1] O

Hence, by knowing initial temperature at certain position of rod made of

non-homogeneous materials it is possible to find the temperature at general position.



Chapter 7

Extorial Functions and its

Applications

7.1 Introduction

This chapter presents the exact (closed form) solution of the heat equation.
To achieve that, we need to introduce a new function denoted by e, (k) entitled
as extorial function which is obtained by replacing polynomials into polynomial
factorials in the expansion of exponential function. Required identities involving
difference operators with factorials are enumerated. And these identities are applied
to obtain solutions of discrete partial difference equation for heat flow in the rod,

thin plate, medium and rod made of multiple materials.

122
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This chapter also focuses on the fractional difference operator which plays a
pivotal role in studying numerous systems and has been widely applied in various
areas of study [B, [15] 23], 24, 25| 26], 32, 33, 36, 37, B9]. Few to mention are population
studies, economy price option and signal processing. Due to certain set backs caused
by accumulative errors which in term makes long term and fast simulation difficult,
less theoretical work are dedicated to fractional difference equations as well as the
applications.

On the contrary to the above developments notable break-through has been
achieved recently. A number of publications by Geodrica and Peterson on boundary
value problems [I8], Abu-saris and Cermark et.al., [3, 14], and D. Balenau et.al.,
[6, A0] in fractional difference equations have made the field popular and easily
approachable. This chapter relates to formulation of the problem of current flow
in the RL circuit into an discrete and fractional difference equation. The authors

attempts to find an effective solution by applying extorial function.

7.2 Preliminaries

In this section, we present basic definitions of /-difference operator and extorial

functions. By Newton’s law of cooling, the partial difference equation of the heat
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flow in the rod made of four material is controlled by the equation

1
’U(k?l, k?g) = Z Oé(k?l + Ml)v(k:l + 7“61, k’g — 62) (71)
r=—2
Here, we show that the extorial function is a solution of the above heat

equation. It also satisfies the heat equation for rod, thin plate and medium of

homogeneous materials.

Definition 7.2.1. For —1 < £ < 1, # 0 and k,v € (—o0,00), and mv + 1 ¢

{0,—1, =2, ...}, the L-extorial function denoted as e,(ky) is defined as

kél/) . k§2u) . kéi&y)
'v+1) T'2v+1) T'Brv+1)

e, (ke) =14 + -+ 00 (7.2)

Ift € (—00,00),0 # 0 and k is a multiple of ¢ and v € N, then (7.2)) is defined, and

which case all except finite terms of e, (k) are zero.
Definition 7.2.2. [7] Let ¢ # 0,k,v € (—o0,00), such that k/{ + 1 — v ¢
{0,—1,—=2,...}. Then, the (-polynomial factorial is defined as

T(k/C+1)
(k/0+1—v)

o =0, k" = 0= (7.3)

where T is the gamma function and k’én) =k(k—=0)(k—=20)---(k—(n—1)¢) ifn € N.

Remark 7.2.3. Note that (i) ei(k@)) = e1(k) and ei(k(—1)) = oo if k > 0.
(ii) e1(—kq)y) = —oo if k > 0 and

1 1 1 1
i) er(k;N) =14 — + =
(5) exllee™) Wik+ 0" 2 (k409

+ ...00; lim e (k') = 1.
k—o0
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Lemma 7.2.4. If k> 0,0 < ¢ < 1, then e1(k_y) = —e1((—k)e).

PREV NG BRC)

Proof. Since ey (k—p) =1+ 1—'6 4 2—'e n 3—|€ 4.
B ko k(k+0) k(k+0)(k+20)
R TR TR 2!
—k  —k(=k—40) —k(-k—10)(-k—20)
ol 2! o]
= —e1((=k)e)- 0

Lemma 7.2.5. If k=ml,{ >0, m € N(0), then e,(ke) is a finite series such as

m k,(r)
er(ke) = 3~
r=0 T°

Proof. Taking k = m/ in Definition [7.2.1], we have

(m0)” | (m0)? | (m0)

er(ke) =1+ — 2l 31

Now (mﬁ)émﬂ) =ml(ml — L) (ml —20)---(ml —ml) =0
(md)™ ) = ml(mt — 0)(ml — 20) - - - (ml — ml)(ml — (m + 1)¢) = 0.
Similarly, we get (mf)ém“) =0fors=1,2,..

Substituting the above relation in ([7.4)) gives the proof. m

Lemma 7.2.6. If0 < { < 1, then Agey(ky) = ley(ky).

Proof. The proof follows from linearity of A, (1.1 and Agkér) = Mkéril). O

Lemma 7.2.7. If k> 0,0 < ¢ < 1, then Ael(/{(@)) = ﬁ@l(k(g)).
0
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kéﬂ) kél) kéQ) ké3)
Proof %el(k“)):%[m U R R

(r)y” | 2ek)” | 3e(k)”

o L (1) 2!( ) (3)!
(k) (k) (k)
—@[14- 1!6 + Z!Z Sf —i—] :€61</€(5)). ]

Lemma 7.2.8. If k> 0,0 < ¢ < 1, then Ael(k(g)) = —561(<k - f)(g)).
]

/f(o)

£k R K
Proof 561%“)):5[ or T T ar T +]

k=00 20k -0 =30k — )%
1! 2l 3!
2 3
(=0 (k=0 -0 ]
1! 2l 3l A

=0+ —

:—€[1+

which gives the proof. ]

Lemma 7.2.9. If0 < (< 1,ne€ N(1), then A}ey(ke) = 0"eq (k).

Proof. The proof follows by taking A} on e;(k;) and applying the Lemma [7.2.6 [

Definition 7.2.10. If kér) # 0 for r = 1,2,..., then the extorial function is the

reciprocal of polynomial factorial and is defined by

11
31 1.3)
3'ke

1
5T

ke 14 +

11
g +oo (7.5)
14

The extorial function for negative index is defined as

o

1 1
ealk)=alk) =Y ——r.
= T o

1
Note that e; <k_) #e_1(ky).
¢
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Example 7.2.11. (i) e;(135) = 2 (7})2 and (i) ey(75) = g:o(—l)f (;)2

The following Lemma gives the difference formula to extorial function for

negative index.

Lemma 7.2.12. If k:ér) #0 forr=1,2,..., then we have

1 1 -1 _ ¢ !
el =l 20 = e o

(7.7)

1 14
and (|1.1)), we have A, =— n and

kY (ko)
+ .-

Proof. From the Definition |7.2.

—_

1 1
+ Ag F+ o Ag

Ag@l(kl> (1—1)+ Agk ) k 31 k 3)
¢ Z 14
—/ 1 —26 1 =3¢

e b s b o
Vk+0P 2 k+0P 3'k+0)f

I SN PRV SES SUNNE NN S SU S
(k+ 07 1 M=o -0 3k-07

B (k+€)§2>€1((klm> = ex(gegy) Ae(h) - =

1
Corollary 7.2.13. If ey (k > =14 =
Y4 .

v () =g S0 - (k f;)g*” (=)

Proof. From the Definition and (|1.1)), we have

ro1 1.1 1 1
+ A+ +

SN A N o A

1! k’z@ 21 ké4) 310

SN S NI e U
Vk+0P 2 k+0P  3'(k+0)f

B -2/ 14+ 1 1 N 1 1 n 1 1 n
(k+ 0 Uk —20P 20k —20 3!k —20)F

- Ufjr—ig)@)e(—z)((k — 20)w) = e ((k =200 Adlk);™ )

Aves() = (1-1) +
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11 n 1 1 n 1 1
11 .m) " 91 .2m) T 31 ,.(3m)
1! k, 2! ky 3! k,

1 1 -m __ —m/
Agem <k/‘_€> = em(m>A€(k§)g = _We(_m)((k — mﬁ)(@)

+ .-, then

Corollary 7.2.14. If em(kle) =1+

1 1 1
Corollary 7.2.15. If =1 < £ < 1 and e, (k) = 1+ﬂk§m>+—k<2m)+—

(3m)
o1t 3!@ T

then Agenm (k@) = em (k@) De(k)7 = (mOE™ Ve (k).
Lemma 7.2.16. (Product formula) For ki, ky € (—o0,00), we have
e1((k1 + k2)e) = ex((kr)p)e((k2),)- (7.8)

Proof. By replacing k by ki + ko and v by 1 in ([7.2)), we arrive

61((k’1 + kZ)Z) — 1+ (k1+k2) + (k1+k2)(k1+ka—0) + (k1+k2)(k1+ko—0) (k1+ka—20) 4400

1 p] 31
B ko ki(ky—0)  ki(ky —0)(ky —20)
=1ttt 3! +o oo
ko kiky  kik? + kok? ko(ko — 0)(ko — 20)
gt gt o + e oo,
which is same as the RHS of ([7.g]). m

Example 7.2.17. By taking k1 = 10,ky = 6,0 = 2, we show that

e1((10 4 6)2) = €1(104).€1(62). Taking k = 16,10, 6 respectively in (7.2)), we arrive

e1(165) = 16 16a4)  (16)14)(12)  (16)(14)(12)10)  (16)(14)(12)(10)(8)

TR 31 41 g
(16)(14)(12)(10)(8)(6) | (16)(14)(12)(10)(8)(6)(4)

+ 6! + 7

- (004000SODE _ gy

10 (10)(8)  (10)(8)(6)  (10)(8)(6)(4) ~ (10)(8)(6)(4)(2
61(102):1+ﬂ+( 2)!( ) ( );!)( ), ( )(4)!( )@) , (0)( )é!)( )2) _ 543

and e, (65) = 1+ % + <6)2§4> + (6)<34!)(2> = 27 = (243)(27) = 6561.

which yields e1(162) = e1(102).e1(62).
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7.3 Exact solution of heat equation of rod, plate

and medium

The extorial function, obtained from exponential function by replacing polynomial
into polynomial factorials plays vital role in finding the exact solution of heat
equation of rod, thin plate and medium. First time, we have derived this type
of exact solution in heat flows. The significance of this function is that when
¢ — 0 extorial becomes exponential function which is exact solution of heat flows
is continuous case. Through our book it is possible to obtain solutions of difference

and differential equations in both discrete and continuous cases.

7.3.1 Extorial function in heat equation of rod

Assume that v(kq, ko) be the temperature of a rod at position k; at time ky. Let

{1 and /5 be the shift values of k; and ks and v be the rate of conductivity of rod.

G (=)™
(=D +er((=nb) @)

18 a closed form solution of the discrete heat equation model

Theorem 7.3.1. If v =

5 then U(kl, k‘g) = 61(161(51))61(]{?2([2)>

A" = A" A" :
©2) U(lﬁ, kg) y {(61,0) U(kl, k2) + 20 'U<k17 kQ)} ) (7 9)

where A U(k?l, kZQ) = U(k?l + 617 ko + 62) — U(l{il,]{?g),n > 0.
(£17Z2)
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Proof. By Lemma we have the relation

(EAO) e1(k1ey))er(kaqey)) = tren(kie))er(kage)) (7.10)
A er(kie))erka,)) = —lier((kr — G)p,))er (k2 e))- (7.11)

(72170)

In the same way, we get

(ZAO) e1(k1ey))er(kagey)) = Laer(k1ey))er(kage))- (7.12)
2,

Substituting the above equations (7.10), (7.11)), (7.12) in (7.9) yields that
G (=)™
(—1)” + 61((—7161)(4”)

v = , which completes the proof. O

7.3.2 Extorial function in heat equation of thin plate

Assume that v(ky, ko, k3) be the temperature of a thin plate at position (kq, ko)
at time k3. Let ¢1, (5 and /3 be the shift values of ki, ks and k3 and ~ be the rate of

conductivity of thin plate.

2 3
Theorem 7.3.2. If ) [6? + (—6?)61((—71&)((1.))]7 =03, then v(k) = [ er((ki)(,))
=1 i=1

1s an exact solution of the discrete heat equation model

A" v(ky, ko, k) = A" v(ky, ko, k3) + A" ki, ko, k . 7.13
(0,€3)U(1 2, k3) ”Y{(Zmyo v(ky, ko, k3) (_1217270)@(1 2 3)} ( )

Proof. The proof is similar to the proof of the Theorem ([7.3.1). O
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7.3.3 Extorial function in heat equation of medium

Assume that v(ky, ko, k3, k4, ks) be the temperature of a thin plate at position
(k1, ko, k3) at time k4 and at density ks. Let ({1, 45, ¢3) and £y, {5 be the shift values

of (ky, ko, k3), ks and k5 and 7 be the rate of conductivity of medium.

3 5
Theorem 7.3.3. If [€?+(—€?)el((—n€i)(4i))}’y =030z, thenv(k) = [] e1((ki) )
i=1

i=1

15 a closed form solution of the discrete heat equation model

A" v(ky, ko, k3, ky, ks) = A" v(ky, ko, ks, kg, ks) ¢ . 7.14
(02ss) ( 1, M2, K3, g 5) 8 {(ﬂ1,2,3) ( 1, F2, K3, R4 5)} ( )
Proof. The proof is similar to the proof of the Theorem [7.3.1] m

7.3.4 Extorial function in rod made of multiple materials

Consider a rod made of multiple materials which is non-homogeneous. Then the
corresponding heat equation can be expressed as
U(k?l,]{?2> = Za(/{:l +T’€1)U(k§1 +T’€1,]€2 —62) (715)
i€z
Theorem 7.3.4. Consider the heat equation (7.15) for a rod made of

non-homogeneous multiple materials. If we have the relation

1= 3" alk +il)er((—ila)xe))-e1 (i) ),

€7

then we get v(ky, kg) = e1((k1)(ey))e1((k2)(+e)) is a closed form solution of (7.15)).



7. Extorial Functions and its Applications 132

Proof. Taking v(ky, k2) = e1((k1)@e))e1((k2)xe)) in for three materials,

e1((kr)@e)er((k2)xe)) = ex((k)@e)er (k) ze) [a(kl)el((—&)(ﬂ,)) + afky + 0)
61((61)(%))-61((—62)&@2))+Oé(k‘1—51)61((—61)&@1))-61((—52)&42))] :

Cancelling e ((k1)(xe,))-€1((k2)(+e,)) on both sides, we get the result for three

materials. By induction on number of multiple materials, we get (7.15). ]

Special cases:

(1) If El = gg, then we have 1 = Z oz(kl + Z.él)el((—Z.fg)(igl)).61((i£1)(igl)).

1€Z

.. . 1 . .
(i) If a(ky + i4y) = 3 then we have 3 = 3" |e1((—il)(xey))-€1((201) (o)) |-
iz

7.4 Extorial solution of linear difference equation

Consider a second order linear difference equation with constant coefficients
[aA% +bAy+ clu(k) = e**, where s is a constant and k is a variable with respect to

shift value ¢. Now, consider the second order homogeneous equation

aA2 + DA, + c]u(k;) —0. (7.16)
Dividing the above equation by ¢ on both sides and let us take A = a, B = % and
C=—weh
= 7z We have
A2 Ay
[AT; + B+ Clulk) = 0. (7.17)
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If we assume that u(k) = e1((mk)@ne) be a solution of (7.17).

A2 A
Ag—;el((mk‘)(m@) + B%el((mk)(mg)) + Ced(mk‘)(m@) =0.
A, B
£—2A€€1((mk‘)(m4)) + 7Ag€1<(mk})(m5)) + 061((mk)(mg)) =0. (718)

(mk)gj’g@ 2me<mk)§3@ 3mé(mk:)gfg£)

Now, Ageq ((mk)me)) = 0+ TR 5 + i + ...
(mK) ey (K)o
= mﬁ[l + 1!( 9 4 2!( 94 .| = (ml)e1((mk)me))-

AZer((mk)mey) = (ml)Ager (ME) (mey) = (ml)?e1((mk) me))-

From (7.1§), %(mﬁ)%l((mk)(m@) + E(mf)el((mk)(mg)) + Cer((mk)mey) =0

l
A
£—2(m€)2 + ?(mé) + C’} e1((mk)me) =0

which yields Am? + Bm + C = 0.

If particularly, u(k) = e** then equation (7.16)) results

esk

sk
(eSl—l)Q—i-b(eSl—l)—i—c} -

esk

(et —1)2+blest — 1)+ ¢
Case (i): Let m; and ms be the two distinct roots of ((7.17)) then the complementary

[aAZ + bA, + C]{a (7.19)

From ([7.16)) and (7.19), then u(k) =
a

function is u(k) = Cre1((Mm1k)(m,e)) + Cae1((M2k) (mar))-

The solution of the equation is

esk

(est —1)2+blest — 1)+ ¢

u(k) = Cre1((m1k) (myey) + Cae1((mak) imye)) + . (7.20)

Example 7.4.1. Let us take the difference equation (A2 —5A,+6)u(k) =¥, ( =1,

s = 1 then the roots of the equation are my; = 3, mg = 2 which are distinct and

ek

(el —1)2—5(e! —1)+6

u(k) = . From the given equation a =1, b= —5, ¢ = 6.
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ek

The solution is u(k) = Cre1((3k)se)) + C2e1((2k)(20)) + 0.3610833

U(O) = 01 + Cg + 2.769444

ek

Agu(k) = C1Ae1((3k)30)) + C2Arer((2k)(20) + A 3610833

From u(0) and Ayu(0), we get C; = 0.308332, Cy = —0.077776.

Case (ii): Let m; and msy be the same distinct roots of ([7.17)) then complementary
function is w(k) = Cie1((mk)me)) + Cae1((ME)me))e1((Mk)(mey). The solution is

esk’
a(est —1)24+b(est — 1)+ ¢

u(k) = [C’l + 0261(<mk)(mg)):|61((ml€)(m3)) + (7.21)

Example 7.4.2. Let us take the difference equation (A2 —6A,+9)u(k) =¥, ( =1,

s = 1 then the roots of the equation are my = 3, mo = 3 which are same and

ekz

(el —1)2—5(et—1)+6
The solution is u(k) = [Cl + 0261((31{3)(36))} e1((3k)se)) +

u(k) = . From the given equation a =1, b= —6, ¢ = 9.

ek

0.3610833

U(O) = Cl + 02 + 2.769444

ek

Aau(h) = |C1 -+ Cobeer((3K)an) | Aeen((3)sn) + Ay gioes

From u(0) and Ayu(0), we get C; = —0.859259, Cy = 0.089815.
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7.5 Exact solutions of RL circuits

The resistor and inductor are the most fundamental linear (element having
linear relationship between voltage and current) and passive elements in electric
circuits. When resistor and inductor are connected across voltage supply, the circuit
so obtained is called as RL circuit which can be either in a series or parallel circuit
depending on the nature of connection between the resistor and inductor. The
extorial function act as exact solution of RL circuits. Here, we obtain exact solutions

of RL circuits.

7.5.1 Current flows in RL circuit

Consider RL circuit, by using the Kirchhoff’s circuit rule, the differential
equation connecting voltage V, resistance R, current I and induction L in series

is given by

dI(k)

V= RI(k) + L= = (7.22)

Now replacing dI(k) = AgI(k), where AyI(k) = I(k+¢)—1(k) and dk = ¢ in (7.22)),
the corresponding difference equation for the current flows in RL series circuit in

the discrete case is

V = RI(k) + LA%(IC). (7.23)
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While heat appears in the RL circuit, the difference equation ([7.23)) becomes

fractional difference equation
AVI(k
V:Rum+L—%¥lm<y<1y (7.24)

The corresponding fractional difference equation for de-energizing in RL circuit is

A7I(k)

0=RI(k) + L=

(7.25)

Finding the solution of the discrete and fractional difference equations ([7.23)) and
(7.24)) is another aim of this book. We obtain solution for the equations ([7.23]) and

(7.24)) using extorial functions.

7.5.2 Extorial Solution of RL circuit

In this section, we find solution of equation ([7.23) after arriving at some basic
results of extorial functions. This extorial function is easily obtained by replacing
polynomial k™ by k,‘én) in the expansion of exponential function e*. This function is

useful to arrive solutions for fractional difference equation.

Definition 7.5.1. The extorial function e1((mk)ume)) is defined by

) (2) 00 (r)
(mk)\,  (mk)? & (mk)Y
TR %“”+m_2;_ﬁ_’

61((m/€)(m4)) =1+ (7.26)

where (mk)% = (mk)(mk —mtl)---(mk — (r — 1)ml) for positive integer r, is the
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falling polynomial factorial. In general, for real index v,

(k) (k) o (k)
cw)((mk)mo) =1+ = £y o L 4. ido0= ZTf (7.27)
' ’ r=0 ’
k
F(Z +1)
where (mk)gz) = (mf)™) 2 and I'(.) is the gamma function.
I'(-+1-rv)

14

Lemma 7.5.2. If e1((mk)(me)) is the extorial function, then we have

Ager((mk)ney) = (ml)ex((mk) ime))-

Proof. Applying A, on the extorial function e;((mk)ne)), we arrive

L (1) L (2)
Af‘fl((mk)(mé)) = Ay(1) + Ae% + Ag% 4+ 00

(m(k+0)5)  (mk)L)

=0+ 1 TR % [(m(k + )@ — (mk)ﬁgg} 4 o0
- @ + % {(m + mb)(mk) — (mk)(mk — meﬂ 400

2mil ay . sml (2)

= ml 4 = (M) + == (k) + - + 00
- (mk)*) (mk)?)
= me |14t ¢ Tl oo
Apel™me = (ml)ey ((mk) (me))- -

Lemma 7.5.3. The extorial function u(k) = e1((mk)me)) is a solution of equation

2
<A% + B% +C)ulk) =0, (7.28)

if m is a root of the auxiliary equation Am? + Bm + C = 0.

Proof. If we try u(k) = e1((mk)@me)) as a solution of equation([7.28)), then it should

satisfy the equation

E%A?el((mk)(mg)) + %Agel((mk})(m@) + 061((mk)(mg)) =0. (729)
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Using (iv) of Lemma7.5.2} linear property of A, and the expansion of e; ((1mk) ),

we arrive at

(mk)ny  2me(mk),),  3ml(mk)()
Ager((mk)gmey) = 0+ (ml) 1'( 0) X > (me) " iy (m) L
. (mk), (k)
i.e, Ager((mk)me) = ml [1 + 1‘( 0 4 2'( 0 4 ] = mley ((mk) me),

which yields Afer ((mk)me)) = (M) Aer(mk)me) = (ml)?er((mk)me))-

Applying the values of Ageq((mk)me) and Afei((mk)me) in (7-29), we obtain
A B
(5 0m0? + Z(me) + C)ex(mk)guey) = 0
which yields, Am? + Bm + C = 0. (7.30)

Hence u(k) = e1((mk) ) is a solution of (7.28) when m is a root of ([7.29). O

Remark 7.5.4. The above lemma can be extended to higher order linear difference

equation with constant coefficients.

Theorem 7.5.5. Let Iy be initial value of I(t). The de-energizing difference equation

for v =1, has a solution of the form

I(k) = Iyey <(_—LR )(fﬁ)) . (7.31)

Proof. The auxiliary equation mL+ R = 0 of equation (|7.25)) has an unique solution

—R
m=—, when L # 0. Applying Lemma (7.5.3| for first order difference yields,

I(t) = IO@I((%RIC)(%RK)), as a solution of ([7.25)) for v = 1. O
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Theorem 7.5.6. Forv =1, the energizing difference equation (7.24)) has a solution

V -R
](k’) = %<€SZ B 1) N R + 1061 ((Tk?> (_LRK)) . (732)

%4
Proof. Let I(k) = EGSk be a solution of equation ([7.24), v = 1, where C is to be

determined. Since s is a constant, from (7.32)), we get Aget = e 9 — 5% which

V
gives a difference equation of the form A,I(k) = —=Agest = —esF(est —1).

C C
Substituting v = 1, I(k) and A/I(k) in (7.24)), we arrive

AJ() V. LV
I(KYR + L :R_sk _|:_sk' sl_l]
RJR+ L= ¢ tle e )
: : L _ VIiL st sk
which yields [R + ZA] =5 [z(e 1+ R)] ek,
L v
Hence, taking C' = —(e¥* — 1+ R), we find I(k) = es* is a particular
¢ st
—(es* =1+ R)
14
solution of equation ([7.24]) when v = 1.
Now ([7.32)) follows by adding ([7.31)) and the above particular solution. ]

-V
Corollary 7.5.7. If Iy = TR then the extorial solution of difference equation

o vV Vv _
(7.23) of the RL circuit is I(k) = 7 RY <(TRk)(—TRe))'
Proof. The proof follows by taking s = 0 in ([7.32)). O]

7.5.3 Extorial energizing for RL circuit

In this section, we derive solution of RL circuit model with extorial energizing.
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Theorem 7.5.8. The flow of current in the RL circuit creates chaos due to

generation of heat. In this case, the difference equation of RL circuit is
AVI(k
Vei((sk)s) = RI(k) + LQT(), 0<v<l). (7.33)

Equation (7.33) is v*" order fractional difference equation. When there is no choas

i RL circuit, the parameter v takes integer value.

Theorem 7.5.9. For v = 1, energizing difference equation Ve ((sk)s) = RI(k) +

AT
LKT(k) has a solution

1) = VGl((S/{?)SZ)R + Ioel< (‘TR@(

L
Z(esZ — 1) +

(7.34)

Proof. Let I(k) = %el((sk)sg) be a solution of equation (v = 1), where C' is to be
determined. Since s is a constant, from ((7.34)), we get
Aer((sk)sr) = er((s(k +£))(se)) — e1((sk)se) which gives
% 1%
A (k) = ZAmei((sk)se) = Fer((sk)so)(er((€)se) — 1)

C C
Substituting v = 1, I(k) and A,/ (k) in the above equation, we arrive

AJ(k)  V Liv .
IR+ L= = Rzen((sh)o) + 5 | 5 (e(tn) = 1)),
. . L VL
which yields [R + ZA] I=% b@l(zz(sg)) 14 R)} ex((sk)se).
Hence taking C' = %(61(6(55)) — 14 R), we find I(k) = 7 v o5k is a

Z(el (g(sg)) -1+ R)
particular solution of equation when v = 1 and ([7.34)) follows. O
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Theorem 7.5.10. For 0 < v < 1, the energizing fractional difference equation

AVI(k
Vei((sk)se) = I(k)R + ET(), (7.35)
has an extorial solution of the form
Vel((sk)(sg)) —R 1
+1, vk _n\1,): 7.36
Lle1(lsp) — 1) + R oex(( L ) (TR)M) (7.36)

Proof. We try I(k) = VCei((sk) ) as a solution of equation (7.35), where C is to
be determined.

Al (k) = VC(er(lise) — Der((sk)sp), AF (k) = VC(er(lisn) — 1)*e1((sk)sp) -+

AJI(k) = VC(e1(lsey) — 1)"e1((sk)(s)) is obtained from AyI(k) = I(k +€) — I(k).
Substituting I and A} in (|7.35)), we find

IR + L ALI(R) = RV Cer(sh)n) + 5 [VC(er(Cn) — Der((5K) )]

L
=VC [Z(el(é(sg)) — 1)'/ + R} 61((Sk})(sg)).
V
Hence I(k) = 7 e1((sk)(se)) is a particular solution of (7.36). O
Z(ellen) =1+ R

14

7.6 Fractional difference heat equation model

In this section, we apply the alpha and Fibonacci difference operators and obtain
new model of heat equations. The solution of these equations are expressed in
terms of extorial functions. The materials up to three dimensions i.e., rod, thin

plate and medium are taken for study and the transfer of heat is examined. The
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two operators (alpha and Fibonacci) are used for the study of transfer of heat and

are defined accordingly.

7.6.1 Extorial solutions of alpha-Fibonacci difference equa-

tion

Let o« # 0, | = (b4,05,05,...,0,) # 0, k = (ky, ko, ,k,) € R” and v(k) be a
real valued n-variable function defined on R™. The n-variable a-difference operator,

denoted as A , on v(k) is defined by
a(0)

%)U(k) = U(/’Cl + 61, ]{32 + EQ, ceey k‘n + fn) - OfU(kj, ]{32, ceey k’n) (737)

This operator becomes partial a-difference operator if some ¢; = 0 but not all ¢;.
Thus the above definition of the alpha and Fibonacci difference operators and its
equations are employed in the forthcoming sections and solutions are derived for

heat equations.

7.6.2 Alpha difference equation and its solution

In this section, we present solutions of partial alpha difference equation with
polynomial factorial and extorial functions. We also apply these type of solutions
to heat flows. In the following lemma some identities related to alpha difference

operator on extorial function are given.
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Lemma 7.6.1. Let kém) #0,n¢€ N, -1 << 1,0 +#0. Then we have the
following identities with extorial function:

(i). a%) e1(ke) = en(ke)[1 + £ — o,

(ii). A en(ke) = ey (ke)lec1y () — ],

(117). A e1((=k)e) = er((=k)e)[L + ¢ —a], k> 0.

Proof. (i). By ([7.37)), and applying A on e;(k), we arrive
a(l)

A e1(ke) = er((k+£0)) — aei(ke) = eq(ke).e1(e) — aer(ke) = e1(ke)[er(le) — ]

a(f)
g(l) 8(2)
= ey (k)[1 + % + % +o—a] =e (k)1 + € —al.

(ii). By (7.37)), and applying A on e(ké_l)), we arrive
a(l)
a%) 6(_1)(]{@) = 6(_1)((/€ + g)g) — oze(_l)(kg) = 6(_1)(165).6(_1)(@) — ae(_l)(kg).
= 6(_1)(1{34)[6(_1)(@) — Oz](fl).

(iii). follows from (ii) by replacing k as —k. O

Theorem 7.6.2. If v(ki, ko) = e1((k1),,)-e1((k2),,) then we have the identities:

() A vlh k) =a(h)y) e () [ ()) — o

a(0,42

(i) A vl k) = ea((B2)) e ((k)) [ea((4),,) =l

Proof. (i) & vlkike) = el(k)e)| A eil(k)y,)
= ex((ka),,) [ex((ke + 2),,) — aer((ha),,)|
= ex((ka),, Jen((ke)y,) er((E2),,) — ]

In the similar way, the proof of (ii) follows. O
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Assume that v(kq, ko) be the temperature of a rod at position k; at time ks,
(1 and /5 be shift values of k; and ks respectively and v be the rate of conductivity
of rod. When considering impact of external climate change on the rod, the partial
a - difference equation of heat flow in the rod becomes fractional «- difference
equation

A ulki k) =3[ A% ok k) A% ok k). (7.38)

Theorem 7.6.3. If v = [el((&)b) — ajel(£(l),,) — a], then the function

v(ky, kz) = e1((k1),,)-e1((k2),,) is exact solution of the a- difference equation ([7.38]).

Proof. By applying the Theorem and ([7.8), we get the proof. O

Corollary 7.6.4. The fractional partial o-difference heat equation (7.38)) has a

solution v(ky, k2) = e1((kn),)-e1(k2)y,) i 7 = [(e1((£2),,) = @) /(ea(E(E1), )~ )]

Assume that v(ky, ks, k3) be the temperature of a thin plate at position (ki, ks) at
time k3. Let (¢1,02) and ¢35 be the shift values of (kq, k) and k3 and v be the rate of
conductivity of thin plate. The fractional partial a-difference heat equation of thin

plate is given by

%y)’l)(k‘l, k‘z, l{?g) = ’y{ (%V)U(k’l, k’g, k’g) + (—AZV )’U(/{fl, kg,ky,)} . (739)

Corollary 7.6.5. If v = [1 + 0 — a)’/(er(£(l2), ,) — &)”], then the function

3

v(k) = ] e1(ki(,)) is an evact solution of the fractional partial heat equation ([7.39).

=1
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Assume that wv(kq, ke, ks, ks, ks5) be the temperature of a medium at position
(k1, ko, k3) at time k4 and at density ks. Let (¢1,0s,¢3) and {4, {5 be the shift
values of (kq, ko, k3), k4 and ks and v be the rate of conductivity of medium. The

fractional partial a-difference equation of heat flow in medium is

AV U(kl,kg,kg,k4,]€5) :7{ AV U(k17k}2,k3,k4,k5>} . (740)
0‘(5(4,5)) CY(:|35(1,2,3))

Corollary 7.6.6. ]f’)/ = |:1 + €4 — Oé)y + 61(1 + f5 — Oé)u/(el(i(£17273>(€172’3)) —a)”] ,

5

thenv(k) = ] e1(ki(,)) is a closed form solution of the fractional partial o-difference
i=1

equation (|7.40)).

7.6.3 Fibonacci difference equation and its solution

In this section, we present solution of partial difference equation with polynomial
factorial and extorial functions. We also apply these type of solutions to heat flows.
Fibonacci difference equation is an extension of alpha difference equation. The

z-Fibonacci difference operator is defined in (|5.1)).

Lemma 7.6.7. Let k‘ém) #£0,n€N, -1 <l <1,0+#0. Then we have
(Z) %) 61(/{)@) = €1(k'g)[1 — xlel(—ﬁg) — 56261(—2£g>],

(ZZ) xA(Z) 61(]{33) = 61(1{?4)[1 — xlel(—&) — 1‘261(—265)]”.

Proof. (i). By (5.1]), and applying A on ekél), we arrive
z(£)

z%) e1(ke) = e1(ke) — e ((k — E)g) — xae1((k — %)3)
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= 61([€g) — Jflel(l{ie)el(—fg) — .%‘261(]%)61(—26@
= e1(ko)[1 — xre1(—lp) — waeq(—24y)].

Similarly, we get the proof of (ii). O

Theorem 7.6.8. If v(ki, kz) = e1((k1),,)-e1((k2),,), then we have the identities

() & vk k) = erl(),) ea((k)y) |1 = mie((la)e) = 22er(2a)e)|

(@) A vk, k2) = ei((ka),,)-e1((k1),,) [1 —zie1((lr)e) — 5U2€1((%1)61)]-

z(£1,0)

Proof. (1). w(&g)v(/ﬁ,kz) = el((kl)el)[x(OA,ég)el<<k2)£2>:|
— e1l(kn)y,) |1 = miea((hs + Ga)es) — maer((k + 26o)es)]

= e1((k)y )1 ((),) [1 = mier(2)) = 261 (26)1,)].

In the similar way, the proof of (ii) follows. O

Assume that v(kq, ko) be the temperature of a rod at position k; at time ks, ¢4
and /5 be shift values of k; and ky respectively and + be the rate of conductivity of
rod. When considering impact of external climate change on the rod, the partial x -
difference equation of heat flow in the rod becomes fractional z-Fibonacci difference
equation

A vlkike) = | A olki k) + A ok, /@)} , (7.41)

where A v(ky, ko) = v(ky + 01, ko + o) — x1v(ky, ko) — xov(ky, ko), 0 < v < 1.
xz(01,02)

Hence, we need to find out solution of fractional difference equation ([7.41)). We may

take v = 1, if there is no climate change outside the rod.
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Theorem 7.6.9. The function v(ki, k2) = e1((k1),,)-e1((k2),,) is an ezact solution

of the x- Fibonacci difference equation (7.41)) if the diffusion rate

7= |1 —ziei((—La) 4,)) — 2261((—262),,))/ (1 — zre1(£(41),,) — $2€1(i(2€1)42))]-

Proof. By applying the Lemma|7.6.7on A , A and (7.8), gives the proof. [
x(£01,0) z(¢2,0)

Corollary 7.6.10. The fractional partial x-Fibonacci difference equation (7.41]) of

heat flows has a solution for the extorial function v(ky, kz) = e1((k1),,)-e1((ka),,) if

v = (1= zie1((—L2),,) — w2e1((—202),,))" /(1 — zre1(E(41),,) — 37261&(251)@))”} :

Assume that v(ky, ks, k3) be the temperature of a thin plate at position (ki, ks) at
time k3. Let (¢1,03) and ¢3 be the shift values of (ki, k2) and ks respectively and ~
be the rate of conductivity of thin plate. A fractional partial z-difference equation

of thin plate is

AY ’U(kl, kQ, kg) =7 { AY U(kl, kg, kg) + A" 'U(kl, kg, ]{3)} . (742)
x(ls z(€1,2) x(—L1,2

3

Corollary 7.6.11. v(k) = [] ei((k:),,) is a closed form solution of the factional
i=1

partial x-difference equation (7.42) of heat flow of thin plate for extorial function if

v = (1—515161((—53%3)—$2€1((—%3)@3))"/(1—1’161(i(fm)gl,z)—%@l(i(%m)em))y]-

Finally, consider the polynomial factorial function kén) given in ([7.2.2)) and the

difference equation

(A yu(k) = ulk +0) — (Duk)) = k", (7.43)
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By taking n = 1, a = 1, {; = {, ky = k and u(k) = kén_l) in ([7.37)), we get
_ 1 .

AR = (k+ 0™ — k™ which is same as k""" Hence, u(k) = —k{" is an exact

1.0 n

solution of the equation ([7.43)). The three dimensional view of the solution of ([7.43)

is given in figure-1.

From the diagram, we observe that the solution oscillates at initial stage and then
it remains constant. Similarly, consider the extorial function e;(1, %) and for the

difference equation
Apu(k) = ulk + €) —u(k) = ey (1, k). (7.44)

From (ii) of Lemma u(k) = e1(1, k) is a solution of equation and it is
shown in figure-2.

The sum of the solutions of equation for k = 1,2,,---,5 gives solution of
equation . From the diagram, we find that the solution is stable after certain
stage. Conversely figure-1 is a decomposition of figure-2, for kK = 1,2, 3,4, 5. Hence,
Fourier decomposition can be replaced by this extorial decomposition in filtering the

noise in Digital Signal Processing and other related fields.



CONCLUSION

In this book entitled n-dimensional difference operators in heat equations, the
authors have attempted to develop appropriate difference operators for given
situations of heat transfer which would take into consideration the rate of heat
transfer and the nature of the material. It also consisted of improvising the
already existing operator in order to make it possible to arrive at the solution of
fractional order heat equations and an effective formulation of the heat equations
with difference operator in order to arrive at the optimal solution.

Here, several difference operators like ¢ operator, q operator, alpha operator,
alpha-beta operators, partial operators, and Fibonacci operator have been employed
into the study of the heat diffusion. This has helped us get enlightened into the
nature of the operators, its working and its limitations. This search led us to tumble
on an operator which would have an extended utility and wide comprehensiveness,
the extorial function. It is indeed an original and unique contribution to our book.

Secondly, in the area of the heat equations a three-step approach has to be

done in order to arrive at the solution of the heat equation of the material taken

149
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for study. The first step includes the formation of discrete heat equation using
Fourier law of cooling in the field of difference equation. The second step consists
in the choice of the appropriate difference operator which would suit our research
problem. The third step includes finding the numerical and exact solution of the
discrete heat equation and thus analysing it with the use of MATLAB. By the
application of the operators mentioned above, the solutions have been derived and
the same has been extended to a thin plate and the medium. At the next level,
the authors deal with the formulation of delay heat equation model. The partial
difference equation which extends its applications in heat equation is taken for study
by the application of a-f difference operator and a model for heat transfer in the
rod. This newly developed partial alpha-beta difference operator provides relevant
results in the field of finite difference methods and the heat equation. The nature of
propagation of heat through materials of dimensions up to three are derived using
partial difference operator.

The authors proceed further to focuses on solutions of partial difference
equation with several variables. Here we have derived some formulae on finite and
infinite series of polynomial and rational functions using inverse principle in number
theory. We have also derived a new type of discrete g-heat equation model whose
solution is a logarithmic function. Heat equation model having sine and cosine
functions as solutions are available in the literature. But finding a heat equation

model having logarithmic solutions is an interesting and challenging task. Hence, we
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formulate a discrete ¢-heat equation model with logarithmic solutions using partial
g-difference operator and find the optimal solution. The results of the propagation
of heat are also diagrammatically represented. This heat equation model is used to
identify the material by proper selection of to avoid heat fluctuation and a decrease
in diffusion. The numerical results show that our new technique, described in this
paper is an accurate and reliable analytical technique, and it can be extended to
high dimensional heat equations with boundary conditions.

The authors proceed on to introduce the partial Fibonacci difference equation
and employs it to study the discrete heat equation by having recourse to Fibonacci
difference operator with shift values. The operator provides a great possibility to
study the various aspects of heat equation: the transfer of heat, nature of the
material used and prediction of temperature having the knowledge of the present
values as the basis. Here we also introduce a new type of Fibonacci discrete heat
equation model for rod using Fibonacci difference operator with delay factor o.
After being successful with the propagation of heat in the rod, the theory has been
extended to thin plate and medium after a substantial effort.

After a considerable amount of research dealing with the diffusion of heat in
material made up of homogeneous material, an attempt had been made to investigate
into the flow of heat in a long rod made of multiple materials stacked together using
partial difference equations. The authors present an innovative approach to study

the flow of heat in a long rod made of multiple materials stacked together using
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partial difference equations. The method presented here is very easy accessible for
solving the heat equation and determining the temperature for all periods by having
the knowledge of initial temperatures. Additionally, the method also provides a
useful tool to measure the rate of heat conductivity. The proposed method is efficient
and thus can be used to solve the thermal conductivity problems of composite
materials.

Finally, the authors make a unique and original contribution by way of
introducing a new extorial function using which the solutions of second order
difference equation have been obtained in an effective way. Additionally, we have
also introduced a new technique for finding the solutions of the fractional difference
equation which adds to the significance of this book. On the basis of the above
findings, the solution for current flow in the RL circuit is effectively derived after
formulating the current flow as the discrete and fractional equations. The uniqueness
of this contribution lies in applying the extorial function which makes the process
less complicated and more effective.

Hence at the end of this book, we can conclude that we have investigates the
generalized partial difference operator and propose a model of it in discrete heat
equation with several parameters and shift values. The diffusion of heat is studied
in dimensions up to three and several solutions are postulated for the same. At
the initial level, the study leads us to the possibility of predicting the temperature

either for the past or the future after getting the know the temperature at a few
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finite points at the present time. It also helps us in making a wise choice of material
() for better propagation of heat. In the converse, it also shows the nature of
transmission of heat for the material under study. Thus, we can say that the above
research helps us in reducing any wastage of heat and also enables us to make an
optimal choice of material (7).

Finally, the authors want to acknowledge that the theory, the results and the
applications obtained in this thesis are originally derived. The results incorporated
in this thesis have been published in various referred international journals. An
innovative attempt has been initiated to make an in-road into the complicated area
of heat diffusion in the material using the difference operators, which have been
modulated in order to comply to the attempt to find the solutions for heat equations
which depict the transfer of heat in the material taken under study. The authors
would like to acknowledge that it is only a preliminary attempt and much could be
done. A great deal of in-depth study could be undertaken into the numerous aspects
that govern the transfer of heat. The proposed method should be upgraded in order
to solve the thermal conductivity problems of composite materials. A great deal of
unexplored area is available in this area of study and this is only a beginning of a

great research journey:.
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