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Chapter 1

Introduction

1.1 Difference Operators and Equations

A difference equation is an equation that contains sequence differences.

There are various types of difference equations namely ordinary, delay, advanced,

neutral, quasilinear, half linear, etc. These equations occur in numerous settings

and forms, both in mathematics itself and its applications to Biology, Computer

Science, Digital Signal Processing, Economics, Statistics and other fields.

The theory of difference equations, the methods used and their wide

applications have advanced beyond their adolescent stage to occupy a central

position in applicable analysis. In fact, in the last 15 years, the proliferation of the

subject has been witnessed by hundreds of research articles, several monographs,

1



1. Introduction 2

many international conferences and numerous special sessions.

1.2 Difference Equation and its Solution

In numerical integration of differential equations a standard approach is to

replace it by a suitable difference equation whose solution can be obtained in a

stable manner and without troubles from round-off errors. There are two types of

solutions for difference equations, one is numerical (or summation form ) another one

is closed form( or exact solution). However, the qualitative properties of solutions of

the difference equations are quite different from the solutions of the corresponding

differential equations. Solutions of several well known difference equations like

Clairaut’s, Euler’s, Riccati’s, Bernoulli’s, Verhulst’s, Duffing’s, Mathieu’s and

Volterra’s difference equations preserve most of the properties of the corresponding

differential equations ([45]).

1.3 Growth of Generalized Difference Operators

The basic theory of difference equations is based on the difference operator

∆ defined as ∆u(κ) = u(κ+ 1)− u(κ), where {u(κ)} is a sequence or a function of

κ of numbers. Many authors ([45],[47]) have suggested the definition of generalized
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difference operator ∆` on real valued function u defined on R = (−∞,∞) as

∆`u(κ) = u(κ+ `)− u(κ), κ ∈ R, ` > 0. (1.1)

E. Thandapani, M.Maria Susai Manuel, G.B.A Xavier [42] considered the definition

of ∆` as given in (1.1) and developed the theory of difference equations in a different

direction. If there exists a function v such that ∆`v(κ) = u(κ), then we call this

function v as ∆−1
` v. Hence, for κ ∈ R = ∪

0≤j<`
N`(j),

if ∆`v(κ) = u(κ), then v(κ) = ∆−1
` u(κ) + cj, (1.2)

where cj is constant for all κ in each N`(j) = {j, j + `, j + 2`, . . .}, j = κ− [κ
`
]`.

In 1989, Miller and Rose introduced the discrete analogue of the

Riemann-Liouville fractional derivative and proved some properties of the

fractional difference operator. In 1984, Jerzy Popenda [27] introduced a particular

type of difference operator on u as ∆αu(κ) = u(κ + 1) − αu(κ), In 2011, M.Maria

Susai Manuel, et.al, [34] extended the operator ∆α to generalized α− difference

operator as ∆
α(`)

v(κ) = v(κ + `) − αv(κ) for real valued function v. In 2014, the

authors in [6] have applied the q-difference operator defined by

∆q v(κ) = v(qκ) − v(κ) and delta operator ∆
κ(`)

with variable coefficients defined by

∆
κ(`)

v(κ) = v(κ+ `)− κv(κ), ` 6= 0 ∈ R.

Also the generalized difference operator with n-shift values

l = (`1, `2, `3, ..., `n) 6= 0 on a real valued function v : Rn → R is defined as

∆
(`)
v(κ) = v(κ1 + `1, κ2 + `2, ..., κn + `n)− v(κ1, κ2, ..., κn). (1.3)
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This operator ∆
(`)

becomes generalized partial difference operator if some `i = 0. The

equations involving ∆
(`)

with atleast one `i = 0 is called generalized partial difference

equation. for one shift value, we take ∆(`) as ∆`. By defining the inverse ∆−1
` , many

interesting results on sum of partial sums of higher power of arithmetic and geometric

functions and applications in numerical methods (see [42],[41]) are obtained. The

difference operator defined in (1.1) becomes the usual difference operator ∆ when

` = 1. We obtain several results on factorial function and Riemann zeta factorial

function by applying ∆−1
` .

1.4 Riemann Zeta Factorial Function

The Riemann zeta function ζ(s) has been studied in many different forms for

centuries. The harmonic series, ζ(1), has been proven to be divergent as far back

as the 14th century [55]. Leonhard Euler, a Swiss mathematician discovered a

closed form expression in 18th century for the sum of the reciprocals of the squared

integers i.e.ζ(2). He also generalized this result and found a closed form expression

for ζ(2n) for n ∈ N [56]. In the 19th century, the German mathematician Bernhard

Riemann considered ζ as a complex function. He published his work in the paper

”On the Number of Primes Less Than a Given Magnitude”, which is one of the most

influential works of modern mathematics [5]. The classical definition of Riemann
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zeta function is ζ(s) =
∞∑
k=0

1

κs
=

∞∑
κ=0

κ−s. Here, we develop higher order Riemann

zeta factorial function obtained by replacing polynomials into polynomial factorials.

Several properties of higher order Riemann zeta factorial functions are derived by

applying the difference operator having shift value `. Some applications of difference

operator and its equation can be found in [1, 6, 7, 27, 34].

1.5 Extorial Function and RL circuit

Here we introduce extorial function and obtain numerical and exact solutions

of certain type of ` difference equations. When `→ 0 the extorial function becomes

exponential function and ` difference equations become Differential equations. The

newly defined `-Extorial function is arrived by replacing the polynomial κn by

factorial polynomial κ
(n)
` in the exponential function eκ. The formal definition of

extorial function is defined by

e(κ
(n)
` ) = 1 +

κ
(n)
`

1!
+
κ

(2n)
`

2!
+
κ

(3n)
`

3!
+ · · ·+∞, |`| < 1, κ ∈ R, (1.4)

where |`| ≤ 1, κ ∈ R and n ∈ Z.

The following identities are arrived from (1.4):

(i) e(κ
(1)
0 )=eκ, (ii) e(κ−1(1)) =∞, (iii)e((−κ)

(1)
(−`)) =

∞∑
r=0

(−1)r
κr`
r!

,

(iv) e((−κ)
(1)
` ) =

∞∑
r=0

(−1)r
κ(−`)(r)

r!
, (v) ∆`e(κ

(1)
` ) = `e(κ

(1)
` ),

(vi) e(κ
(1)
` ) =

a∑
r=0

κ
(r)
`

r!
if κ = n` For κ1, κ2 ∈ R and ` ∈ (0, 1),
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The additive properties of extorial function is given by

e
(

(κ1 + κ2)
(1)
`

)
= e
(

(κ1)
(1)
`

)
e
(

(κ2)
(1)
`

)
. (1.5)

The negative index extorial function is defined as

e(κ
−(n)
` ) = 1 +

1

1!

1

κ
(n)
`

+
1

2!

1

κ
(2n)
`

+
1

3!

1

κ
(3n)
`

+ · · ·∞, κ(rn)
` 6= 0. (1.6)

and we derive

e(1
(−1)
−1 ) =

∞∑
r=0

1

(r!)2
, e(−1

(−1)
1 ) =

∞∑
r=0

(−1)r
1

(r!)2

For κ
(rn)
` 6= 0, n ∈ N, |`| < 1 and κ

−(n)
` = 1

κ
(n)
`

, we have

∆`e(κ
−(n)
` ) =

−n`
(κ+ `)

(n+1)
`

e((κ− n`)−(n)
` ). (1.7)

Note that κ
(−n)
` is different from κ

−(n)
` and here we use the notation κ

−(n)
` .

For positive κ and ` > 0, we have

e(−κ−(1)
` ) =

∞∑
r=0

(−1)r
1

r!

1

κ
(r)
`

.

For ` ∈ (−1, 1) and κ ∈ R, the nth order `-extorial function en(κ`) is defined

en(κ`) = 1 +
κ

(n)
`

n!
+
κ

(2n)
`

(2n)!
+
κ

(3n)
`

(3n)!
+ · · ·+∞. (1.8)

Note that en(κ`) is different from e(κ
(n)
` ).

From the definition of extorial function, we obtain following identities.

For real κ, ` > 0 and n ∈ N, we have

(i) en(−κ`) =


en(κ(−`)) if n is even,

1−
κ

(n)
(−`)

n!
+
κ

(2n)
(−`)

(2n)!
−
κ

(3n)
(−`)

(3n)!
+ · · · if n is odd,
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and

(ii) en(−κ(−`)) =


en(κ(`)) if n is even,

1− (κ)
(n)
`

n!
+

(κ)
(2n)
`

2n!
− (κ)

(3n)
`

3n!
+ · · · if n is odd,

(iii) ∆`en(κ`) = `
∞∑
m=1

κ
(mn−1)
`

(mn−1)!
, nm 6= 1, (iv) ∆n

` en(κ`) = en(κ
(1)
` )

(v) ∆m
` em(κ`) = `mem(κ`) and (vi) ∆−m` em(κ`) =

em(κ`)

`m
, ` ∈ N.

The summation form of en(k`) is obtained as

(vii) e−n(κ`) =
∞∑
r=0

1

(rn)!

1

κ
(rn)
`

(1.9)

These concepts are newly arrived and these have been used for obtaining new formula

and application in RL circuits.

1.6 Summary

This book consists of eight chapters. In the first chapter, we present necessary

introduction on difference operator, difference equations, growth of difference

operator and formation of research work.

Chapter 2 provides relation between `-delta operator and shift operator E,

conversion of polynomial into polynomial factorial and vice-verse. For example,

∆r
` =

r∑
j=0

(−1)j
r!

(r − j)j!
E`(r−j) (1.10)
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and

∆r
`(κ

n) =
r∑
j=0

(−1)i
r!

(r − j)j!
[κ+ `(r − j)]n =


0 if r > n

n!`n if r = n.

(1.11)

are arrived.

If Snr and sni are Stirling numbers of second and first kinds respectively, then

κn =
n∑
r=1

Snr `
n−rκ

(r)
` (1.12)

and

κ
(n)
` =

n∑
r=1

snr `
n−rκr (1.13)

Here, we give a method and a table to find Bernoulli’s polynomials using stirling

numbers of first and second kinds.

Chapter 3 deals with the higher order delta inverse on real valued function u.

Here we derive a main theorem by introducing J1 set. Assume that J1 be a subset

of real numbers such κ ∈ J1 implies κ ± 1 ∈ J1 and f : J1 → R be a real valued

function. If ∆−ru(κ)
∣∣∣
κ=0

= 0 for r = 1, 2, 3, · · ·n, n ∈ N(1), then

(∆−na u)(κ) =
1

(n− 1)!

κ−n∑
s=a

(κ− s− 1)(n−1)u(s), (1.14)

where a, κ ∈ J1 is an such that k − a− n ∈ N(1) = {1, 2, 3, · · · }

Also, the corresponding result related to ∆` is obtained below:

If κ > m`, 0 < ` <∞ and u(κ−m`) = 0, then

∆−n` u(κ)
∣∣∣κ
κ−m`

=
m∑
r=0

(n+ r)(n)

`n
u(κ− `− r`), (1.15)
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where (n+ r)(n) is a falling factorial.

In Chapter 4, we introduce new function called as extorial function and obtain

extorial type solutions of higher order linear `−difference equations with constant

coefficients. Consider the nth order linear difference equation of the form

(
an

∆n
`

`n
+ an−1

∆n−1
`

`n−1
+ · · ·+ a0

)
u(κ) = e1(tκ)t`, (1.16)

where a′is for i = 1, 2, 3, ..., n are constants. Now, for the homogenous equation

(
an

∆n
`

`n
+ an−1

∆n−1
`

`n−1
+ · · ·+ a0

)
u(κ) = 0 (1.17)

we try u(κ) = e1((mκ)(m`)) as solution of (1.17). Then we get

(
an

∆n
` e1((mκ)(m`))

`n
+ an−1

∆n−1
` e1((mκ)(m`))

`n−1
+ · · ·+ a0e1((mκ)(m`))

)
u(κ) = 0.

(1.18)

Since ∆`e1((mκ)(m`)) = m`e1((mκ)(m`)),∆
2
`e1((mκ)(m`)) = (m`)2e1((mκ)(m`)), we

find that

∆n
` e1((mκ)(m`)) = (m`)ne1((mκ)(m`)). Substituting the values in (1.18), we get

an
`n

(m`)ne1((mκ)m`) +
an1

`n−1
(m`)n−1e1((mκ)m`) + · · ·+ a0e1((mκ)m`) = 0,

which gives

(an
`n

(m`)n +
an1

`n−1
(m`)n−1 + · · ·+ a0

)
= 0. (1.19)

The auxiliary equation for (1.19) is obtained as

anm
n + an−1m

n−1 + · · ·+ a0 = 0. (1.20)
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Therefore, if m is a root of (1.20), e1((mκ)(m`)) becomes a solution of (1.17).

The particular solution of (1.16) is obtained as

u(κ) =
e1((tκ)(t`))

ane1((t`)− 1)n + an−1e1((t`)− 1)n−1 + · · ·+ a0

.

Case 1 : Suppose zeros are real and different,then the complementary function for

(1.16) is u(κ) = A1e1(m1κ)(m1`) +A2e1(m2κ)(m2`) + · · ·+Ane1(m2κ)(mn`), where Ai’s

are constants for all i=0,1,2,· · ·n. Therefore the general solution of (1.16) is

u(κ) =
[
A1e1((m1κ)(m1`)) + A2e1((m2κ)(m2`)) + · · ·+ Ane1((mnκ)(m`))

]
+

e1((tκ)(t`))

an [e1(t`)t` − 1]n + an−1e1[((t`)t`)− 1]n−1 + · · ·+ a0

.

(1.21)

Case 2 : Suppose the roots are real and same then the general solution of (1.16) is

u(κ) =
[
An + An−1(mκ)

(n−1)
(m`) + An−2(mκ)

(n−2)
(m`) + · · ·+ A1(mκ)(m`)

(1)
]
e1((mκ)(m`))

+
e1((tκ)(t`))

ane1[((t`)t`)− 1]n + an−1e1[((t`)t`)− 1]n−1 + · · ·+ a0

.

(1.22)

Illustrative examples are given in the book.

Chapter 5 focuses on the fractional order Riemann zeta factorial function

defined as

ζn` (κ, s) = ∆
−(n−1)
` ζ`(κ, s). (1.23)

This function is obtained by replacing polynomials into factorials in the harmonic

series like extorial function. When n = 2, s ≥ 3, ` > 0 and (κ − 2`)s−2
` 6= 0, then

we have the second order Riemann zeta factorial function as
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ζ2
` (κ, s) =

∞∑
t=0

(t+ 1)
(1)
1

(κ+ t`)
(s)
`

=
1

`2(s− 1)
(2)
1 (κ− 2`)

(s−2)
`

. (1.24)

In general, mth order Riemann zeta factorial function is expressed as

ζm` (κ, s) =
∞∑
t=0

(t+ (m− 1))
(m−1)
1

(m− 1)!(κ+ t`)
(s)
`

=
1

`m(s− 1)
(m)
1 (κ−m`)(s−m)

`

. (1.25)

In Chapter 6, for each positive integer n and for x ∈ (−∞,∞), the partial

exponential function denoted as en(x) is defined as

en(x) = 1 +
xn

n!
+

x2n

(2n)!
+

x3n

(3n)!
+ · · ·+∞ =

∞∑
r=0

xrn

(rn)!
. (1.26)

When n = 1, (1.26) becomes exponential function.

Here, we find that the sub exponential function en(x) given in (1.26)is a solution of

the (n− 1)th order linear non homogeneous differential equation

dn−1

dxn−1
u(x) +

dn−2

dxn−2
u(x) + · · ·+ d

dx
u(x) + u(x) = ex.

Chapter 7 is devoted for two dimensional nabla difference operator, defined by

∇
(a)`

v(κ1, κ2) = v(κ1, κ2)− a1v(κ1 + `1, κ2 + `2)− a2v(κ1 + 2`1, κ2 + 2`2). (1.27)

The inverse of nabla operator is defined as if there exists a function v such that

∇
(a)`

v(κ1, κ2) = u(κ1, κ2)⇒ v(κ1, κ2) =
−1

∇
(a)`

u(κ1, κ2) + c, , (1.28)

where a = (a1, a2) and ` = (`1, `2), (κ1, κ2) ∈ R2 and c is an arbitrary constant.

Let 1−
2∑
j=1

aje((j`1)`1)e((j`2)`2) 6= 0. By (1.27) and (1.28), we have

∇
(a)`

E(κ) = E(κ)− a1E(κ+ `)− a2E(κ+ 2`), (1.29)



1. Introduction 12

where E(κ) = e((κ1)`1)e((κ2)`2)

Now, ∇
(a)`

E(κ) = E(κ)[1− a1E(`)− a2e(2(`1)`1)e(2(`2)`2)] yields

−1

∇
(a)`

E(κ) =
E(κ)

1−
2∑
j=1

aje((j`1)`1)e((j`2)`2)

. (1.30)

Let Fn denotes the nth term of two parameter Fibonacci sequence . Let v(κ1, κ2) be

a solution of the equation ∇
(a)`

v(κ1, κ2) = u(κ1, κ2), (κ1, κ2) ∈ R2, then we obtain

v(κ1, κ2)− (FnFn−1 + a2Fn−1)v(κ1 + (n+ 1)`1, κ2 + (n+ 1)`2)

− a2Fnv(κ1 + (n+ 2)`1, κ2 + (n+ 2)`2) =
n∑
i=0

Fiu(κ1 + i`1, κ2 + i`2). (1.31)

In the final Chapter 8, we give an application of extorial function in RL

circuit and also we show that the extorial function u(κ) = e1((mκ)(m)) is a solution

of second order linear difference equation

(
A∆2 +B∆ + C

)
u(κ) = 0, (1.32)

if m is a root of the auxiliary equation Am2 +Bm+ C = 0.

Let I0 be initial value of I(t). The de-energizing difference equation for ν = 1, has

a solution of the form

I(κ) = I0e1

((
−R
L
κ

)
(−R
L

)

)
. (1.33)

For ν = 1, the energizing difference equation has a solution

I(κ) =
V

L

`
(es` − 1) +R

+ I0e1

((
−R
L
κ

)
(−R
L
`)

)
. (1.34)
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Also we apply extorial function to obtain solution of Heat filows.

Several applications are arrived in physical science using extorial functions.



Chapter 2

Stirling Numbres and Bernouilli’s

Polynomials

2.1 Introduction

Theory of generalized difference operator ∆` defined by ∆`v(κ) = v(κ+ `)− v(κ) is

developed in [42]. Formulae for finding the sum of the nth power of an arithmetic

progression, sum of the products of n consecutive terms of an arithmetic progression,

the sum of an arithmetic - geometric progression, qualitative properties of certain

class of generalized difference equations are some of the applications of ∆` (see

[42, 43]). Results developed in [42, 43] coincide with the corresponding results in

[45, 47] when ` = 1. Theory of ∆±` and Generalized Bernoulli polynomials Bn(κ,−`)

14
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for (−`) with applications are established in [44]. Here, the theory of ∆` is extended

to solutions of certain types of generalized difference equations, in particular

generalized Clairaut’s difference equation and generalized Euler difference equation.

The generalized Bernoulli polynomials Bn(κ, `) for `, n ∈ N(1) are solutions of the

first order linear difference equation v(κ+`)−v(κ) = nκn−1, which yield the formula

an + (a+ `)n + (a+ 2`)n + . . .+ (a+ (κ− 1)`)n = 1
n+1

[Bn+1(a+ κ`, `)−Bn+1(a, `)].

Here we use (i) N(a) = {a, a+ 1, a+ 2, . . .}, (ii) N`(a) = a, a+ `, a+ 2`, · · ·,

( iii) Z is the set of all integers, (iv) c, c0, c1, c2, . . . are constants,

(v) Γ(κ) =
∞∫
0

e−ttκ−1dt, and (vi) κ(n) = κ(κ− 1)(κ− 2) . . . (κ− n+ 1), n ∈ N(1).

2.2 Preliminaries

Here, we give basic definitions and some lemma’s as ∆` operator and shift

operator.

Definition 2.2.1. [42] Let v be a real valued function defined on R. The generalized

difference operator ∆` on u(κ) is defined as

∆`(v(κ)) = v(κ+ `)− v(κ). (2.1)

For the shift operator E, the relation E`(v(κ)) = v(κ+ `) gives

E` = ∆ + 1 = (1 + ∆)`. (2.2)

The inverse of ∆` is defined as follows.
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If ∆`(u(κ)) = v(κ), then u(κ) = ∆−1
` (v(κ)) + c

Lemma 2.2.2. [42] Let `, n, r ∈ N(1). Then the rth order of ∆` is obtained as

∆r
` =

r∑
j=0

(−1)j
r!

(r − j)!j!
E`(r−j) (2.3)

and

∆r
`(κ

n) =
r∑
j=0

(−1)i
r!

(r − j)!j!
[κ+ `(r − j)]n =


0 if r > n

n!`n if r = n.

(2.4)

Definition 2.2.3. [42] If n ∈ N(1), then the `-falling factorial κ
(n)
` is defined by

κ
(n)
` = κ(κ− `)(κ− 2`) . . . (κ− n`+ `) (2.5)

and for a real sequences {v(κ)}κ∈Z, the closed `-falling factorial on u(k) is

[v(κ)]
(n)
` = v(κ)v(κ− `) . . . v(κ− n`+ `).

Lemma 2.2.4. [42] If sni and Snr are Stirling numbers of first and second kinds

respectively, then the relation between polynomial and factorial polynomials are

κn =
n∑
r=1

Snr `
n−rκ

(r)
` , (2.6)

and

κ
(n)
` =

n∑
r=1

snr `
n−rκr. (2.7)

Lemma 2.2.5. [42] If `,m ∈ N(1) and κ ∈ N(m`) = {m`, (m+ 1)`, (m+ 2)`, · · · }.

Then the `- delta inverse of κ
(m)
` is obtained as

∆−1
` κ

(m)
` =

κ
(m+1)
`

`(m+ 1)
+ cj (2.8)
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and the summation of `- delta inverse of given function ’v’ is

∆−1
` v(κ`+ i) =

κ−1∑
r=0

v(r`+ j) + cj, j = 0, 1, . . . `− 1. (2.9)

Lemma 2.2.6. Let n, `,m ∈ N(1) and n ≥ m. Then, if we assume cj = 0 for all

∆−1
` ,∆−2

` , · · · ,∆−n` , then the mth order `- delta and its inverse of κ
(n)
` are

∆m
` κ

(n)
` = (n`)

(m)
` `mκ

(n−m)
` , n > m. (2.10)

and

∆−m` κ
(n−m)
` =

κ
(n)
`

(n`)
(m)
`

.

Proof. From the definition of κ
(n)
` and applying ∆`κ

(n)
` we have

∆`κ
(n)
` = (κ+ `)

(n)
` − κ

(n)
` = n`κ

(n−1)
`

Again taking ∆` on both sides, we derive

∆2
`κ

(n)
` = n`∆`κ

(n−1)
` = (n`)(n− 1)`κ

(n−2)
` = n(2)`2κ

(n−2)
` .

Continuting this process upto ∆m
` we get the required result.

Definition 2.2.7. [43] If m ∈ N(1), then the equation of the form

f(κ, v(κ), v(κ+ `), v(κ+ 2`), . . . , v(κ+m`)) = 0

is called the generalized `-difference equation.

Definition 2.2.8. [47] Let Bn(κ) = κn + b1κ
n−1 + b2κ

n−2 + . . . + bn−1κ + Bn(0)

be an nth degree are Bernoulli polynomials in κ. Then the generalized Bernoulli
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polynomials Bn(κ, `) are defined as

`Bn(κ, `) = κn + b1`κ
n−1 + b2`

2κn−2 + . . .+ bn−1`
n−1κ+Bn(0)`n, n ∈ N(1)

Note that Bn(κ, 1) = Bn(κ), the Bernoulli’s polynomial.

Example 2.2.9. [47])Let Bn(κ) be Bernoulli polynomials satisfying the equation

Bn(κ+1)−Bn(κ) = nκn−1. Then Bn(κ) = n
κ−1∑
i=1

in−1 +Bn(0), where the Bernoulli’s

numbers Bn(0) are obtained by equating the coefficients of λn in(
1 +

λ

2!
+
λ3

3!
+ ...

)−1

=
∞∑
n=0

λn

n!
Bn(0)

and

κn =
1

n+ 1

n∑
i=0

(n+ 1)!

(n+ 1− i)!i!
. (2.11)

Example 2.2.10. [45] For the Euler second order linear difference equation

4(κ+ 1)κ∆2u(κ) + 4κ∆u(κ) + 9u(κ) = 0, the polynomial
n∑
j=0

aj(λ)(j) = 0 reduces to

4λ2 + 9 = 0. Thus, u1(κ) =
Γ(κ+ 3

2
i)

Γ(κ)
and u2(κ) =

Γ(κ− 3
2
i)

Γ(κ)

are the solutions of the above Euler difference equation. However, since

Γ(z) =

∞∫
0

e−ttx−1 cos (y ln t) dt+ i

∞∫
0

e−ttx−1 sin (y ln t) dt

it follows that,

u1(κ) =
1

Γ(κ)

∞∫
0

e−ttκ−1 cos

(
3

2
ln t

)
dt

and

u2(κ) =
1

Γ(κ)
i

∞∫
0

e−ttκ−1 sin

(
3

2
ln t

)
dt

are linearly independent solutions of the Euler difference equation.
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2.3 Bernoulli’s Polynomials

In this section, we develop Bernoulli’s polynomials by Stirling numbers of

both first and second kinds and it is given table form.

Theorem 2.3.1. If `,m, n are positive integers such that m ≤ n and κ ∈ N`(n`),

then v(κ) = κ is a solution of the generalized factorial difference equation

m∑
r=0

(−1)r
m!

(m− r)!r!
u(κ+ `−m− 1) = (n`)

(m)
` (v(κ))

(n−m)
` (2.12)

where (v(κ))
(n)
` = v(κ)u(κ− `) · · ·u(κ− n`− `).

Proof. Using the shift operator E, equation (2.12) can be expressed as[
m∑
r=0

(−1)r
m!

(m− r)!r!
E`(m−r)

]
(v(κ))

(n)
` = (n)

(m)
` `m (v(κ))

(n−m)
` ,

which yields (
E` − 1

)m
(v(κ))

(n)
` = (n)

(m)
` `m (v(κ))

(n−m)
` . (2.13)

Using (2.2) in (2.13), we obtain

∆m
` (v(κ))

(n)
` = (n)

(m)
` `m (v(κ))

(n−m)
` . (2.14)

Now the proof follows from Lemma 2.2.6 and (2.14).

Theorem 2.3.2. If m and ` are positive integers, then any polynomial in κ of degree

m with leading coefficient
c

m!`m
is a solution of the generalized difference equation

m∑
r=0

(−1)r
m!

(m− r)!r!
v(κ+m`− r`) = c. (2.15)
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Proof. The equation (2.15) can be expressed as

m∑
r=0

(−1)r
m!

(m− r)!r!
Em`−r`v(κ) =

( c

m!`m

)
m!`m.

Using (2.2), it reduces to

∆m
` v(κ) =

( c

m!`m

)
m!`m. (2.16)

From (2.4), we obtain

∆m
`

{ c

m!`m
κm + c1κ

m−1 + ...+ cm

}
= c. (2.17)

Now, the proof follows from (2.16) and (2.17).

Theorem 2.3.3. Let `,m ∈ N(1) and 0 ≤ r ≤ m. Then

v(κ) =
a0

m!`m
κm + a1κ

m−1 + a2κ
m−2 + ...+ am

is a solution of the generalized difference equation

r∑
j=0

m!

(m− r)!r!
v(κ+ (m− j)`)

=
r∑
j=0

(−1)m−j+1

(m− j)!j!
m!

m∑
r=0

a0

m!`m
(κ+ j`)m−r, (2.18)

where aj’s are arbitrary constants.

Proof. By defining v(κ) = a0
m!`m

κm + a1κ
m−1 + a2κ

m−2 + ... + am, (2.18) can be

expressed as
m∑
j=0

(−1)j
r∑
j=0

m!

(m− r)!r!
v(κ+ (m− j)`) = a0 (2.19)

The proof now follows from Theorem 2.3.2.
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Theorem 2.3.4. For n ∈ N(0), the generalized Bernoulli polynomial Bn+1(κ, `) is

a solution of the generalized difference equation

v(κ+ `)− v(κ) = (n+ 1)κn. (2.20)

Furthermore, if `, n ∈ N(1) and snj , S
n
j are Stirling numbers of first and second kinds,

then we have

Bn+1(κ, `) =
n∑
j=1

n+ 1

j + 1
Snj s

j+1
j `n−1κ+

n∑
r=1

(
n∑
j=r

n+ 1

j + 1
Snj s

j+1
r+1

)
`n−r−1κr+1+Bn+1(0)`n,

(2.21)

where the Bernoulli numbers Bn(0) can be obtained by the recurrence relations

B1(0) = 1;Bn(0) = − 1

n

n−1∑
j=0

Bj+1(0)
r∑
j=0

n!

(n− r)!r!
, n ∈ N(2). (2.22)

Proof. By (2.7) the equation definition (2.2.1), (2.20) becomes

v(κ) = (n+ 1)∆−1
`

(
n∑
r=1

Snr `
n−rκ

(r)
`

)
+ A, (2.23)

where A is an arbitrary constant and n ∈ N(1).

Applying (2.8) in (2.23), we obtain

v(κ) = (n+ 1)

(
n∑
r=1

Snr `
n−r κ

(r+1)
`

`(r + 1)

)
+ A.

By definition (2.2.8) and assuming A = Bn+1(0)`n, we get

v(κ) = Bn+1(κ, `) =
n∑
r=1

n+ 1

r + 1
Snr `

n−r−1κ
(r+1)
` + `nBn+1(0). (2.24)
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Using (2.7) in (2.24), we obtain

Bn+1(κ, `) =
n∑
r=1

n+ 1

r + 1
`n−r−1Snr

r+1∑
j=1

sr+1
j `r−1κj +Bn+1(0)`n,

which yields (2.21). Example (2.2.9) yields (2.22) and the proof now follows by

definition (2.2.1).

Corollary 2.3.5. v(κ) =
n∑

m=0

am
m+ 1

Bm+1(κ, `) is a solution to the generalized

difference equation yκ+` − v(κ) =
n∑

m=0

amκ
m, κ ∈ N(0), ` ∈ N(1), where ai’s are

given constants (assume S0
0 = 1).

The following example illustrates the Theorem 2.3.4.

Example 2.3.6. Here we establish a method to find the generalized Bernoulli

polynomials Bn(κ, `) and obtain the generalized Bernoulli polynomials in κ for `

up to degree 10 which are solutions to v(κ+ `)− v(κ) = nκn−1, n = 0, 1, 2, . . . 10.

Dividing
r∑
j=0

n!

(n− r)!r!
from the Pascal triangle for

r∑
j=0

n!

(n− r)!r!
and using

(2.22), we obtain table (i) for getting Bernoulli’s number.

(i) (Note that Bn(0) = − sum of product of the number and shift number in the nth

row).
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Bn(0)

1

1
2 (1)

−1
2

1
3 (1)

1(−1
2 )

1
6

1
4 (1)

1(−1
2 )

3
2 ( 1

6 )
0

1
5 (1)

1(−1
2 ) 2( 1

6 )
2(0)

−1
30

1
6 (1)

1(−1
2 )

5
2 ( 1

6 )
10
3 (0)

5
2 (−1

30 )
0

1
7 (1)

1(−1
2 ) 3( 1

6 )
5(0) 5(−1

30 ) 3(0)
1
42

1
8 (1)

1(−1
2 )

7
2 ( 1

6 )
7(0)

35
4 (−1

30 )
7(0)

7
2 ( 1

42 )
0

1
9 (1)

1(−1
2 ) 4( 1

6 )
28
3 (0)

14(−1
30 ) 14(0)

28
3 ( 1

42 )
4(0)

−1
30

1
10 (1)

1(−1
2 )

9
2 ( 1

6 )
12(0) 21(−1

30 )
126
5 (0)

21( 1
42 )

12(0)
9
2 (−1

30 )
0

1
11 (1)

1(−1
2 ) 5( 1

6 )
15(0) 15(−1

30 ) 42(0) 42( 1
42 )

30(0) 15(−1
30 ) 5(0)

5
66

table (i) Bernoulli’s number

Sn+1
i = Sni−1 + iSni generates table (ii).

11

11 12

11 32 13

11 72 63 14

11 152 253 104 15

11 312 903 654 155 16

11 632 3013 3504 1405 216 17

11 1272 9663 17014 10505 2666 287 18

11 2552 30253 77704 69515 26466 4627 368 19

table (ii) Stirling number of second kind
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1−1

−1−2 −1−2
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

2−3 −3−3 1−3
1
3

1
7
3

5 31
8

21
127
3

85

−6 11 −6 1
1
4

3
2

25
4

45
2

301
4

483
2

3025
4

24 −50 35 −10 1
1
5

2 13 70
1701

5
1554

−120 274 −225 85 −15 1
1
6

5
2

70
3

175
2317

2

720 −1764 1624 −735 175 −21 1
1
7

3 38 378

−5040 13068 −13132 6769 −1960 322 −28 1
1
8

7
2

231
4

40320 −109584 118124 −67284 22449 −4536 546 −36 1
1
9

4

−362880 1026576 −1172700 723680 −269325 63273 −9450 870 −45 1 1
10

κ κ2 κ3 κ4 κ5 κ6 κ7 κ8 κ9 κ10

0 −3
2

0 5 0 −7 0
15
2

−5 1 B10(κ) ×10

− 3
10

0 2 0 −21
5

0 6 −9
2

1 B9(κ) ×9

0
2
3

0 −7
3

0
14
3

−4 1 B8(κ) ×8

1
6

0 −7
6

0
7
2

−7
2

1 B7(κ) ×7

0 −1
2

0
5
2

−3 1 B6(κ) ×6

−1
6

0
5
3

−5
2

1 B5(κ) ×5

0 1 −2 1 B4(κ) ×4

1
2

−3
2

1 B3(κ) ×3

−1 1 B2(κ) ×2

1 B1(κ) ×1
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table (iii) Bernoulli’s polynomials

In table (iii), upper north west triangular values are the Stirling numbers of first

kind having the relations sn+1
i = sni−1 − nsni and upper north east triangular values

Sni
i+ 1

are obtained from table (ii). n
〈

(s2
1, s

3
1, ...s

n
1 ) ,
(
Sn−1
1

2
,
Sn−1
2

3
, ...

Sn−1
n−1

n

)〉
is the

coefficient of κ`n−2 of Bn(κ, `), n

〈(
sj+1
j+1, s

j+2
j+1, ..., s

n
j+1

)
,

(
Sn−1
j

j+1
,
Sn−1
j+1

j+2
, ...,

Sn−1
n−1

n

)〉
is

the coefficient of κj+1`n−j+2 of Bn(κ, `) for j = 1, 2, . . . , n and n ∈ N(2) where 〈.〉

denote the inner product. 1 is the coefficient of κ`−1 of B1(κ, `). The values of Bn(0)

of table (i) and the lower triangular values (coefficients) of table (iii) generate the

Bernoulli polynomials of degree up to 10 as given below.

B10(κ, `) = 5
66
`9 − 3

2
`7κ2 + 5`5κ4 − 7`3κ6 + 15

2
`κ8 − 5κ9 + `−1κ10

B9 (κ, `) = − 3
10
`7κ+ 2`5κ3 − 21

5
`3κ5 + 6`κ7 − 9

2
κ8 + `−1κ9

B8 (κ, `) = 1
30
`7 + 2

3
`5κ2 − 7

3
`3κ4 + 14

3
`κ6 − 4κ7 + `−1κ8

B7 (κ, `) = 1
6
`5κ− 7

6
`3κ3 + 7

2
`κ5 − 7

2
κ6 + `−1κ7

B6 (κ, `) = 1
4
`5 − 1

2
`3κ2 + 5

2
`κ4 − 3κ5 + `−1κ6

B5 (κ, `) = −1
6
`3κ+ 5

3
`κ3 − 5

2
κ4 + `−1κ4

B4 (κ, `) = − 1
30
`3 + `κ2 − 2κ3 + `−1κ4

B3 (κ, `) = 1
2
`κ− 3

2
κ2 + `−1κ3

B2 (κ, `) = 1
6
`− κ+ `−1κ2

B1 (κ, `) = −1
2

+ `−1κ.

The above polynomials Bn(κ, `) are solutions of the generalized difference equations
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v(κ+ `)− v(κ) = nκn−1 for n = 10, 9, . . . , 1 respectively.

Corollary 2.3.7. If Bn+1(κ, `) is the generalized Bernoulli polynomial for ` in κ of

degree n+ 1, then we have the relation

an+(a+`)n+(a+2`)n+. . .+(a+κ`−`)n =
1

n+ 1
[Bn+1(a+κ`, `)−Bn+1(a, `)]. (2.25)

Proof. From Theorem 2.3.4 and ∆`Bn+1(κ, `) = (n+ 1)κn, we find

1

n+ 1
Bn+1(κ`+ a, `) = ∆−1

` (κ`+ a)n.

Now, the proof follows by substituting v(κ) = κn in (2.9).

The following example is an illustration of (2.25).

Example 2.3.8. Using (2.25) the sum of the 9th powers of arithmetic progression

with initial term a = 4, common difference ` = 3 and last term 997 is obtained as

49 + 79 + . . . + 9979 = 1
10

[B10(1000, 3) − B10(4, 3)], where B10(k, `) is given in the

example 2.3.6.

2.4 Generalized Clairaut’s and Eulers Difference

Equation

In the following, we present certain types of difference equations and its

solutions. In particular we obtain solutions of discrete generalized clairaut’s and

euler difference equation using `- delta theory.
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Example 2.4.1. (i) The equation v(κ+ `) = (−1)`κ(`)(κ− 1)(`)v(κ),

has a solution v(κ) = c(−1)κΓ(κ− `+ 1)Γ(κ− `),Γ(κ) = (κ− 1)Γ(κ− 1).

(ii) Since v(κ+ `) =
c3κ+`Γ(κ+ 1 + 1)

[Γ(κ+ 1)]2
=

3`(κ+ 1)(`)

[κ(`)]2
C3κΓ(κ+ 1− `+ 1)

[Γ(κ− `+ 1)]2
.

The equation v(κ+ `) = 3`
(κ+ 1)(`)

[κ(`)]2
v(κ), has a solution v(κ) = c3κ

(κ− `+ 1)

Γ(κ− `+ 1)
,

(iii) The solution v(κ) = c
κ− `

Γ

(
κ+

3

2
− `
) of the equation

v(κ+ `) =
κ(`)

(κ− 1)(`)

(
κ+

1

2

)(`)
v(κ) is obtained form

v(κ) = c
Γ(κ− `+ 1)

Γ(κ− 1− `+ 1)Γ

(
κ+

1

2
− `+ 1

)
(iv) The equation (aκ+ b)

(`)
(a)v(κ+ `) + (cκ+ d)

(`)
(c)v(κ) = 0, a 6= 0, c 6= 0,

has a solution v(κ) = c

(−1)

1

`
c

a

κ

Γ

(
κ+

d

c
− `+ 1

)

Γ

(
κ+

b

a
− `+ 1

) ,

since v(κ+ `) = −
(cκ+ d)

(`)
(c)

(aκ+ b)
(`)
(a)

v(κ) =

(−1)

1

`
c

a

`

(
κ+

d

c

)(`)

(
κ+

b

a

)(`)
v(κ).

(v) The equation v(κ+ `) =
c`(κ− α1)(`)(κ− α2)(`)...(κ− αn)(`)

(κ− β1)(`)(κ− β2)(`)...(κ− βn)(`)
v(κ),

has a solution v(κ) =
c1c

κΓ(κ− α1 − `+ 1)Γ(κ− α2 − `+ 1)...Γ(κ− αn − `+ 1)

Γ(κ− β1 − `+ 1)Γ(κ− β2 − `+ 1)...Γ(κ− βn − `+ 1)
.
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Theorem 2.4.2. If f is a non- linear function, then the generalized Clairaut’s

difference equation

`u(κ) = κ∆`u(κ) + f(∆`u(κ)), κ ∈ N (2.26)

has a solution

u(κ) =
1

`
{κc+ f(c)} (2.27)

and

(κ+ `) +
f(v(κ)) + ∆`v(κ)− f(v(κ))

∆`v(κ)
= 0 (2.28)

yields another solution to (2.26) where v(κ) = ∆`u(κ).

Proof. By taking v(κ) = ∆`u(κ), (2.26) becomes

`u(κ) = κv(κ) + f(v(κ)) (2.29)

and yields

`v(κ) = (κ+ `)v(κ+ `)− κv(κ) + f(v(κ+ `))− f(v(κ))

which is the same as

(κ+ `)∆`v(κ) + f(v(κ) + ∆`v(κ))− f(v(κ)) = 0. (2.30)

which yield (2.27) and (2.28), (2.30) is possible if either ∆`v(κ) = 0 or (2.27) hold

Example 2.4.3. The generalized Clairaut’s equation

`u(κ) = κ∆`u(κ) + [∆`u(κ)]2 , κ ∈ N (2.31)
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has solutions

u(κ) =
1

`
[κc+ c2] (2.32)

and

u(κ) =
1

`

[
`−1∑
n=0

cne
iπ(2n+1)κ

` − `

4

]2

− κ2

4`
. (2.33)

Proof. Now (2.32) follows from (2.31), (2.27) and (2.28) corresponding to (2.31) of

Theorem 2.4.2 and v(κ) = ∆`u(κ) yield

v(κ+ `) + v(κ) + κ+ ` = 0, (2.34)

which has the general solution

v(κ) =
`−1∑
n=0

cne
iπ(2n+1)κ

` − κ

2
− `

4
. (2.35)

Now (2.33) follows from (2.31), ∆`u(κ) = v(κ) and (2.35).

Example 2.4.4. The generalized Clairaut’s difference equation

`u(κ) = κ∆`u(κ) +
1

∆`u(κ)
, κ ∈ N (2.36)

has a solution

u(κ) =
1

`

[
κc+

1

c

]
, (2.37)

and another solution

u(κ`+ j) =


ai

κ
2
−1∑
r=0

[(2r−1)`+j]
(r)
2`

(2r`+j)
(r)
2`

+ 1
aj

κ
2
−1∑
r=0

(2r`+j)
(r)
2`

[(2r+1)`+j]
(r)
2`

+ cj if κ is even

aj

κ−1
2∑

r=0

[(2r−1)`+j]
(r)
2`

(2r`+j)
(r)
2`

+ 1
aj

κ−1
2
−1∑

r=0

(2r`+j)
(r)
2`

[(2r+1)`+j]
(r)
2`

+ cj if κ is odd,

(2.38)

where aj’s and cj’s are arbitrary constants and j = 0, 1, 2, . . . , `− 1.
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Proof. Now (2.37) follows from (2.36) and (2.27).

Taking v(κ) = ∆`u(κ) and (2.28) corresponding to (2.36) yields

v(κ)v(κ+ `) =
1

κ+ `
. (2.39)

From ∆`v(κ) 6= 0, we get (κ+ `) +
1

∆`v(κ)

[
1

v(κ+ `)
− 1

v(κ)

]
= 0,

Since κ ∈ N implies κ = (2n+ 1)`+ j or 2n`+ j for some n ∈ N and

j ∈ {0, 1, 2, . . . , `− 1}, by (2.5), we obtain a solution of (2.39) as

v(2n`+ j) =
[(2n− 1)`+ j]

(n)
2` v(j)

(2n`+ j)
(n)
2`

, (2.40)

and

v[(2n+ 1)`+ j] =
(2n`+ j)

(n)
2`

[(2n+ 1)`+ j]
(n+1)
2` v(j)

. (2.41)

Now, (2.38) follows from (2.9), u(κ) = ∆−1
` v(κ), (2.40) and (2.41).

Theorem 2.4.5. If c0cn 6= 0, then u(κ) =
Γ(κ` +λ)

Γ(κ` )
is a solution to the generalized

Euler difference equation

n∑
j=0

cj [κ+ (j − 1)`]
(j)
` ∆j

`u(κ) = 0, κ ∈ N(1) (2.42)

if and only if λ is a root of the equation

n∑
j=0

cj`
j(λ)(j) = 0. (2.43)

Proof. By seeking a solution of (2.42) in the form u(κ) =
Γ(κ` +λ)

Γ(κ` )
with

κ

`
+λ different

from negative integer, from ∆j
`u(κ) =

λ(j)Γ(κ` +λ)
Γ(κ` )

and (2.43) it follows that

n∑
j=0

cj [κ+ (j − 1)`]
(j)
` (λ)(j) Γ

(
κ
`

+ λ
)

Γ
(
κ
`

+ i
) . (2.44)
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Since (κ
`

+ i− 1
)(i)

=
[κ+ (i− 1)`]

(i)
`

`i
=

Γ
(
κ
`

+ i
)

Γ
(
κ
`

) ,

(2.44) becomes
n∑
j=0

ci`
j(λ)(j) Γ

(
κ
`

+ λ
)

Γ
(
κ
`

) = 0,

which completes the proof of the theorem.

Corollary 2.4.6. u(κ) =
Γ(κ` +λ)

Γ(κ` )
is a solution to the difference equation

n∑
j=0

cj`
n−j[κ+ (i− 1)`]

(j)
` ∆

(j)
` u(κ) = 0 (2.45)

if and only if λ is a root of the equation

n∑
j=0

cjλ
(j) = 0. (2.46)

Proof. The proof follows by replacing cj by cj`
n−j in (2.42) and `n

Γ
(
κ
`

+ λ
)

Γ
(
κ
`

) 6= 0.

Corollary 2.4.7. The function u(κ) =
Γ(κ` +λ)

Γ(κ` )
is a solution of the difference

equation
n∑
j=0

cj
`j

[κ+ (j − 1)`]
(j)
` ∆

(j)
` u(κ) = 0 (2.47)

if and only if λ is a root of the equation (2.46).

Proof. The proof follows by replacing cj by
cj
`j

in (2.42).

Corollary 2.4.8. If λ = α + iβ is a complex root of equation (2.43), then

u1(κ) =
1

µ
(
κ
`

) ∞∫
0

e−tt
κ
`

+α−1 cos (β ln t) dt
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and

u2(κ) =
1

µ
(
κ
`

) ∞∫
0

e−tt
κ
`

+α−1 sin (β ln t) dt

are two independent solutions of (2.42), (2.45) and (2.47).

Proof. The proof follows by taking u1(κ) and u2(κ) as

u1(κ) =
Γ
(
κ
`

+ α + 3
2
i
)

Γ
(
κ
`

) and u2(κ) =
Γ
(
κ
`

+ α− 3
2
i
)

Γ
(
κ
`

) .

and Example 2.4.1.



Chapter 3

Higher Order Delta Operator and

its Sum

3.1 Introduction

The fractional sum of a function f (or νth order delta integration) is defined by

(∆−νa u)(κ) =
1

Γ(ν)

κ−ν∑
s=a

Γ(κ− s)
Γ(κ− s− (ν − 1))

u(s), (3.1)

where ν > 0, f is defined for s = a mod(1) and ∆−νf is defined for κ = a+ν mod(1).

Most of the mathematicians in this field are aware of this definition in phase are

(Summation form), but they are not aware of another phase of equation (3.1). In

our research, we are taking care of the second phase called exact form (closed form

33
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) of equation (3.1). Hence, we discuss equation (3.1) in a detailed manner.

The authors are considering equation (3.1) as a definition for all ν > 0. But our

finding shows that the equation need not be a definition, it can be considered as a

theorem for all positive integer ν = n ∈ N(1).

3.2 Finite Fractional Order Difference

Let J` be a subset of R satisfying the condition that a ∈ J` if and ony if

a± ` ∈ J`. In the following theorem, we are going to show that equation (3.1) is a

theorem but not a definition if ν is a positive integer n and a = 0.

First ,we give an example for proving the equation (3.1) and which will be used in

the subsequent derivation.

Example 3.2.1. Consider the function u(κ) = κ(n), n ≥ 1, κ ∈ Z, where

κ(n) = κ(κ− 1) · · · (κ− (n− 1)) is the falling factorials.

Now, f(0) = 0 and ∆κ(n) = nκ(n−1), ∆2κ(n) = n(2)κ(n−2), ∆3κ(n) = n(3)κ(n−3), · · ·

and in general, we have

∆rκ(n) = n(r)κ(n−r), r ≤ n, κ(0) = 1, (3.2)

where n(r) = n(n − 1) · · · (n − (r − 1)). From (3.30), and the extension of (3.15),

we get

∆−rκ(n−r) =
κ(n)

n(r)
. (3.3)
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If we replace n by n+ r in (3.2), we get

∆−rκ(n) =
κ(n+r)

(n+ r)(r)
, n ≥ 0. (3.4)

It is clear that ∆−ru(κ)
∣∣∣
κ=0

=
κ(n+r)

(n+ r)(r)

∣∣∣
κ=0

= 0, r = 0, 1, 2, 3, · · · When r = 2,

∆−2κ(n) =
κ(n+2)

(n+ 2)(2)
. (3.5)

Substituting (3.5) in (3.29), we get

κ(n+2)

(n+ 2)(2)
− 0(n+2)

(n+ 2)(2)
=

κ−2∑
s=0

Γ(κ− s)
Γ(κ− s− 1)

s(n), (3.6)

κ(n+2)

(n+ 2)(2)
= (κ− 2)1(n) + (κ− 3)2(n) + · · ·+ 1(κ− 2)(n).

Suppose that κ = 1000, (3.6) becomes

1000(n+2)

(n+ 2)2
= (998)1(n) + (997)2(n) + · · ·+ 1(998)(n).

Now, since Γ(n) = (n− 1)Γ(n− 1), (3.6) can be expressed as

κ(n+2)

(n+ 2)(2)
= (κ− 1)0(n) + (κ− 2)1(n) + (κ− 3)2(n) + · · ·+ 1(κ− 2)(n). (3.7)

Special cases: when n = 0, 0! = 1, we have

κ(2)

2(2)
= 1 + 2 + 3 + · · ·+ (κ− 3) + (κ− 2) + (κ− 1), (3.8)

which is a well known formula.

For verification, if we take n = 1 and κ = 5 in (3.7), we can have

5(3)

3(2)
= (4)0(1) + (3)1(1) + (2)2(1) + (1)3(1),
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(i.e)
5.4.3

3.2
= 0 + 3 + 2(2) + 1(3) = 10.

Similarly one can verify formula (3.7) for any positive integer n and κ.

Example 3.2.2. By taking r = 1 in (3.4), we get

∆−1κ(n) =
κ(n+1)

(n+ 1)
. (3.9)

If we take u(κ) = κ(n), κ ∈ N(1) and applying (3.9) in (3.24), we arrive

κ(n+1)

(n+ 1)
− 0(n+1)

(n+ 1)
= 0(n) + 1(n) + 2(n) + · · ·+ (κ− 1)(n). (3.10)

By replacing κ by κ+ 1 in (3.10), it is obvious that

(κ+ 1)(n+1)

(n+ 1)
= 1(n) + 2(n) + · · ·+ κ(n). (3.11)

For verification, if we take κ = 5 and n = 3, then (3.11) becomes

6(4)

4
= 1(3) + 2(3) + 3(3) + 4(3) + 5(3), then

6.5.4.3

4
= 0 + 0 + 3.2.1 + 4.3.2 + 5.4.3.

(i.e),
6.5.4.3

4
= 6 + 24 + 60 = 90. We will use the formula (3.11) in the main

derivation.

The general form of (3.10) is given by

(κ+ 1)(n+1)

(n+ 1)
− a(n+1)

(n+ 1)
= a(n) + (a+ 1)(n) + · · ·+ (κ− 1)(n), ∀ κ ∈ R if κ− a ∈ N(1).

(3.12)

For verification, if we take κ = 4.5, a = 1.5 and n = 3 in (3.12), we have

(4.5)(4)

4
− (1.5)(4)

4
= (1.5)(3) + (2.5)(3) + (3.5)(3)

(4.5)(3.5)(2.5)(1.5)

4
− (1.5)(0.5)(−0.5)(−1.5)

4
= (1.5)(0.5)(−0.5)
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+ (2.5)(1.5)(0.5) + (3.5)(2.5)(1.5)

1

4

(9

2
.
7

2
.
5

2
.
3

2
− 3

2
.
1

2
.
1

2
.
3

2

)
= −3

2
.
1

2
.
1

2
+

5

2
.
3

2
.
1

2
+

7

2
.
5

2
.
3

2

9.7.5.3

8
− 3.1.3

8
= −3.1.1 + 5.3.1 + 7.5.3 = −1 + 5 + 35 = 37

Thus, 9.7.5− 3 = 8(39) = 312.

Hence, (3.12) is valid for all real κ and a such that κ− a ∈ N(1).

Theorem 3.2.3. Assume that J1 be a subset of real numbers such that 0 ∈ J1

and κ ∈ J1 implies κ ± 1 ∈ J1 and u : J1 → R be a real valued function. If

∆−ru(κ)
∣∣∣
κ=0

= 0 for r = 1, 2, 3, · · ·n, then

(∆−nu)(κ) =
1

(n− 1)!

κ−n∑
s=0

(t− s− 1)(n−1)u(s), (3.13)

where κ ∈ J1, κ ≥ n+ 1 and integer .

Proof: From the definition of the delta operator ∆ on u(κ), we have

∆u(κ) = u(κ+ 1)− u(κ), κ ∈ J1 (3.14)

and if ∆v(κ) = u(κ), κ ∈ J1, then

v(κ) = ∆−1u(κ). (3.15)

Equation (3.14) and (3.15) are basic definitions. Remember that in (3.15), v(κ) is

an delta inverse of u(κ). Here, we have assumed that

∆ru(κ)
∣∣∣
κ=0

= 0, r = 0, 1, 2, · · · , n. (3.16)
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By taking

∆−1u(κ) = v(κ)(say), (3.17)

from (3.14) and (3.15), we write

u(κ) = ∆v(κ) = v(κ+ 1)− v(κ), κ ∈ J1.

Replacing κ by κ− 1, we get u(κ− 1) = v(κ)− v(κ− 1), which gives

v(κ) = u(κ− 1) + v(κ− 1). (3.18)

Replacing κ by κ− 1 in (3.18), we get

v(κ− 1) = u(κ− 2) + v(κ− 2). (3.19)

Substituting (3.19) in (3.18), we get

v(κ) = u(κ− 1) + u(κ− 2) + v(κ− 2). (3.20)

Replacing κ by κ−2, κ−3, · · ·κ− (m−1) respectively in (3.18), we will be obtaining

v(κ − 2), v(κ − 3), · · · , v(κ − (m − 1)). Substituting all these values in (3.20), we

find

v(κ) = u(κ− 1) + u(κ− 2) + · · ·+ u(κ−m) + v(κ−m),

which can be expressed, using (3.17), as

∆−1u(κ)−∆−1u(κ−m) = u(κ− 1) + u(κ− 2) + · · ·+ u(κ−m). (3.21)
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If we take κ−m = a in (3.21), then we can arrange (3.21) as

∆−1u(κ)−∆−1u(a) =
κ−1∑
s=a

u(s), κ ∈ Z, κ ≥ a+ 1 (3.22)

or

∆−1
a u(κ) =

1

0!

κ−1∑
s=a

(t− s− 1)(0)u(s), κ ∈ J1, κ− 1− a ∈ N(1). (3.23)

When m = κ and a = 0, relation (3.23) becomes

∆−1
0 u(κ) =

κ−1∑
s=0

(t− s− 1)(0)u(s), κ ∈ Z, κ ≥ 1, (3.24)

where ∆−1
0 u(κ) = ∆−1u(κ)−∆−1u(κ)

∣∣∣
κ=0

.

By assuming ∆−1u(κ)
∣∣∣
κ=0

, (3.24) becomes

∆−1u(κ) = u(0) + u(1) + u(2) + · · ·+ u(κ− 1). (3.25)

If we replace κ by κ− 1 in (3.25) and κ ≥ 0, we have

∆−1u(κ− 1) = u(0) + u(1) + u(2) + · · ·+ u(κ− 2).

Similarly,

∆−1u(κ− 2) = u(0) + u(1) + u(2) + · · ·+ u(κ− 3).

∆−1u(κ− 3) = u(0) + u(1) + u(2) + · · ·+ u(κ− 4).

...

∆−1u(κ− (κ− 1)) = u(0)

∆−1u(κ− κ) = ∆−1u(0) = 0 (assumption)

Adding the above all expressions, we get

∆−1u(κ− 1) + ∆−1u(κ− 2) + · · ·+ ∆−1u(1) + ∆−1u(0)
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= 1u(κ−2)+2u(κ−3)+3u(κ−4)+ · · ·+(κ−1)u(0). (3.26)

If we replace f by ∆−1f in (3.25), we will be getting

∆−1(∆−1u(κ)) = ∆−1u(0) + ∆−1u(1) + ∆−1u(2) + · · ·+ ∆−1u(κ− 1) (3.27)

and (3.26) becomes

∆−2u(κ) = (κ− 1)u(0) + (κ− 2)u(1) + · · ·+ 2u(κ− 3) + 1u(κ− 2), (3.28)

where ∆−2u(κ) = ∆−1(∆−1u(κ)), κ ∈ Z, κ ≥ 2.

Now, (3.28) can be expressed as

∆−2u(κ)−∆−2u(0) =
1

1!

κ−2∑
s=0

(t− s− 1)(1)u(s), κ ≥ 2, κ ∈ Z (3.29)

which is the same as, Since
−2

∆ u(0) = 0,

∆−2
0 u(κ) =

1

1!

κ−2∑
s=0

(t− s− 1)(1)u(s), κ ∈ N(2). (3.30)

Considering the equation (3.28), we arrive

∆−2u(κ) = (κ− 1)u(0) + (κ− 2)u(1) + (κ− 3)u(2) + · · ·+ 2u(κ− 3) + 1u(κ− 2).

Replacing κ by κ− 1 in (3.28) gives

∆−2u(κ−1) = (κ−2)u(0)+(κ−3)u(1)+(κ−4)u(2)+· · ·+2u(κ−4)+1u(κ−3). (3.31)

Again, replacing κ by κ− 2 in (3.28) yields

∆−2u(κ−2) = (κ−3)u(0)+(κ−4)u(1)+(κ−5)u(2)+· · ·+2u(κ−5)+1u(κ−4). (3.32)
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By replacing κ by κ− 3 in (3.32), we get

∆−2u(κ− 3) = (κ− 4)u(0) + (κ− 5)u(1) + (κ− 6)u(2) + · · ·+ 2u(κ− 6) + 1u(κ− 5).

By continuing this procedure, we get

∆−2u(κ− (κ− 1)) = 1.u(0).

∆−2u(κ− κ) = ∆−2u(0) = 0.

Adding all the above expressions starting from (3.31), we can arrange

∆−2u(κ− 1) + ∆−2u(κ− 2) + ∆−2u(κ− 3) + · · ·+ ∆−2u(1) + ∆−2u(0)

= [1 + 2 + · · ·+ (κ− 2)]u(0) + [1 + 2 + · · ·+ (κ− 3)]u(1)

+[1+2+ · · ·+(κ−4)]u(2)+ · · ·+[1+2]u(κ−4)+1[u(κ−3)]. (3.33)

Replacing f by ∆−2f in (3.25), we get

∆−2u(κ− 1) + ∆−2u(κ− 2) + ∆−2u(κ− 3) + · · ·+ ∆−2u(1) + ∆−2u(0) = ∆−3u(κ).

(3.34)

Applying (3.8) and (3.34) in (3.33) gives

∆−3u(κ) =
(κ− 1)(2)

2
u(0) +

(κ− 2)(2)

2
u(1) + · · ·+ 3(2)

2
u(κ− 4) +

2(2)

2
u(κ− 3)

=
1

2!

(
(κ− 1)(κ− 2)u(0) + (κ− 2)(κ− 3)u(1) + (κ− 3)(κ− 4)u(2) + · · ·

+ 3.2u(κ− 4) + 2.1u(κ− 3)
)

.

=
1

2!

(
(κ− 1)(κ− 2)u(0) + (κ− 2)(κ− 3)u(1) + · · ·

+ 3.2u(κ− 4) + 2.1u(κ− 3)
)

.
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=
1

2!

(
(κ− 1)(2)u(0) + (κ− 2)(2)u(1) + (κ− 3)(3)u(2) + · · ·+ 3.2u(κ− 4)

+ 2.1u(κ− 3)
)

.

∆−3u(κ) =
1

2!

κ−3∑
s=0

(t− s− 1)(2)u(s). (3.35)

We prove the result (3.2.3) by induction on n.

Hypothesis: Assume that the following relation holds;

∆−(n−1)u(κ) =
1

Γ(n− 1)

κ−(n−1)∑
s=0

(t− s− 1)(n−2)u(s). (3.36)

where the falling factorial,

(κ− s− 1)(n−2) = (κ− s− 1)(κ− s− 2)(κ− s− 3) · · · (κ− s− (n− 2)), (3.37)

Substituting (3.37) in (3.36), we obtain

∆−(n−1)u(κ) =
1

(n− 2)!

κ−(n−1)∑
s=0

(κ− s− 1)(n−2)u(s). (3.38)

By expanding the series (3.38), we derive

∆−(n−1)u(κ) =
1

(n− 2)!

(
(κ− 1)(n−2)u(0) + (κ− 2)(n−2)u(1) + (κ− 3)(n−2)u(2)

+ · · ·+ (n− 1)(n−2)u(κ− n) + (n− 2)(n−2)u(κ− (n− 1))
)
. (3.39)

Replacing κ by κ− 1 in (3.40) yields

∆−(n−1)u(κ−1) =
1

(n− 2)!

(
(κ−2)(n−2)u(0)+(κ−3)(n−2)u(1)+(κ−4)(n−2)u(2)

(κ− 5)(n−2)u(3) + · · ·+ (n− 2)(n−2)u(κ− n)
)
. (3.40)
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∆−(n−1)u(κ−2) =
1

(n− 2)!

(
(κ−3)(n−2)u(0)+(κ−4)(n−2)u(1)+(κ−5)(n−2)u(2)

(κ− 6)(n−2)u(3) + · · ·+ (n− 2)(n−2)u(κ− n− 1)
)
.

∆−(n−1)u(κ−3) =
1

(n− 2)!

(
(κ−4)(n−2)u(0)+(κ−5)(n−2)u(1)+(κ−6)(n−2)u(2)

(κ− 7)(n−2)u(3) + · · ·+ (n− 2)(n−2)u(κ− n− 2)
)
.

...

∆(n−1)u(κ− (κ− 1)) =
(n− 2)(n−2)

(n− 2)!
u(0).

∆(n−1)u(0) = 0 (by assumption)

By adding all the above equation starting from (3.40), we find

∆−(n−1)u(κ− 1) + ∆−(n−1)u(κ− 2) + ∆−(n−1)u(κ− 3) + · · ·+ ∆−(n−1)u(0)

=
1

(n− 2)!

(
[(κ− 2)(n−2) + (κ− 3)(n−2) + · · ·+ (n− 2)(n−2)]u(0)

+ [(κ− 3)(n−2) + (κ− 4)(n−2) + · · ·+ (n− 2)(n−2)]u(1)

+ [(κ− 4)(n−2) + (κ− 5)(n−2) + · · ·+ (n− 2)(n−2)]u(2)

+ · · ·+ (n− 2)(n−2)u(κ− n)
)
. (3.41)

Replacing u by ∆−1u in (3.25), we get

∆−1∆−(n−1)u(κ) = ∆−(n−1)u(κ− 1) + ∆−(n−1)u(κ− 2) + · · ·+ ∆−(n−1)u(0),

which is same as

∆−nu(κ) = ∆−(n−1)u(κ− 1) + ∆−(n−1)u(κ− 2) + · · ·+ ∆−(n−1)u(0). (3.42)
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Replacing κ by κ− 1, n by n− 2 and a by n− 2 in (3.12), we obtain

(κ− 1)(n−1)

(n− 1)
− (n− 2)(n−1)

(n− 1)
= (n− 2)(n−2) + (n− 1)(n−2) + · · ·+ (κ− 2)(n−2), (3.43)

Since (n− 2)(n−1) = 0, we can arrive at

(κ− 1)(n−1)

(n− 1)
= (κ− 2)(n−2) + (κ− 3)(n−2) + · · ·+ (n− 1)(n−2) + (n− 2)(n−2). (3.44)

Similarly, it is easy to obtain

(κ− 2)(n−1)

(n− 1)
= (κ− 3)(n−2) + (κ− 4)(n−2) + · · ·+ (n− 1)(n−2) + (n− 2)(n−2) (3.45)

(κ− 3)(n−1)

(n− 1)
= (κ− 4)(n−2) + (κ− 5)(n−2) + · · ·+ (n− 1)(n−2) + (n− 2)(n−2)

and so on, and finally we get

(n− 1)(n−1)

(n− 1)
= (n− 2)(n−2). (3.46)

Substituting (3.42)-(3.46) in (3.41), we obtain

∆−nu(κ) =
1

(n− 2)!

((κ− 1)(n−1)

(n− 1)
u(0)+

(κ− 2)(n−1)

(n− 1)
u(1)+· · ·+(n− 1)(n−1)

(n− 1)
u(κ−n)

)
,

which is same as

∆−nu(κ)−∆−nu(0) =
1

(n− 2)!

(
(κ−1)(n−1)u(0)+(κ−2)(n−1)u(1)

+(κ−3)(n−1)u(2)+ · · ·+(n−1)(n−1)u(κ−n)
)
. (3.47)

as ∆−nu(0) = 0.

Now, from the property of falling factorial, we find

(κ− 1)(n−1) = (κ− 1)(κ− 2)(κ− 3) · · · (κ− (n− 1)),
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and (3.47) becomes, since
−n
∆ u(0) = 0

∆−n0 u(κ) =
1

(n− 1)!

(
(κ−1)(n−1)u(0)+(κ−2)(n−2)u(1)+· · ·+(κ−(n−1))κ−(n−1)u(κ−n)

)
,

which gives ,

∆−n0 u(κ) =
1

(n− 1)!

k−n∑
s=0

(κ− s− 1)(n−1)u(s), 1 ≤ n ≤ κ ∈ N(1). (3.48)

and the proof ins complete.

Corollary 3.2.4. Let κ ∈ R = J1 and κ − n − a ∈ N(1). If ∆−ru(κ)
∣∣∣
κ=a

= 0 for

r = 0, 1, 2, · · · , n, then

∆−na u(κ) =
1

(n− 1)

κ−n∑
s=a

(κ− s− 1)(n−1)u(s), (3.49)

where ∆−na u(κ) = ∆−nu(κ)−∆−nu(a).

Proof: The proof follows by taking κ−m = a in the previous derivation.

Example 3.2.5. Consider the function u(κ) = (κ− 5)(3),

k ∈ N(3) = {3, 4, · · · }, u(5) = 0, ∆−1u(κ) =
(κ− 5)(4)

4
and

−1

∆ u(κ)
∣∣∣
κ=s

= 0.

∆(κ− 5)(3) = (κ− 4)(3) − (κ− 5)(3)

= (κ− 4)(κ− 5)(κ− 6)− (κ− 5)(κ− 6)(κ− 7)

= (κ− 5)(κ− 6)[κ− 4− κ+ 7] = (κ− 5)(κ− 6).3

= 3.(κ− 5)(2)

Similarly, ∆(κ− 5)(4) = 4.(κ− 5)(3) yields that

∆−1(κ− 5)(3) =
(κ− 5)(4)

4
and ∆−1(κ− 5)(3)

∣∣∣
κ=5

= 0
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∆−2(κ− 5)(3) =
(κ− 5)(5)

5.4
and ∆−2(κ− 5)(3)

∣∣∣
κ=5

= 0

∆−3(κ− 5)(3) =
(κ− 5)(4)

6.5.4
and ∆−3(κ− 5)(3)

∣∣∣
κ=5

= 0

and so on.

Taking n = 3, κ = 11, a = 5 in (3.49), we get

∆−3
5 (κ− 5)(3) =

1

2!

8∑
s=5

(κ− s− 1)!

(κ− s− 3)!
(s− 5)(3), (3.50)

(κ− 5)(6)

6.5.4
− 0(6)

6.5.4
=

1

2!

8∑
s=5

(κ− s− 1)(κ− s− 2)(s− 5)(3)

Putting κ = 11 gives

6(6)

6.5.4
=

1

2!

8∑
s=5

(10− s)(9− s)(s− 5)(3) =
6.5.4.3.2.1

6.5.4
= (3)(2)(1),

which completes the verification of (3.48).

The following example shows that the above procedure is not applicable for geometric

and other functions.

Example 3.2.6. Consider the function u(κ) = 2κ, 20 6= 0,

Now ∆2κ = 2κ+1 − 2κ = (2− 1)2κ = 2κ.

Similarly, ∆22κ = 2κ gives ∆−22κ = 2κ, 20 6= 0 and

∆32κ = 2κ implies ∆−32κ = 2κ.

For n = 3, (3.48) can be expressed as

∆−3
0 u(κ) =

1

2!

κ−3∑
s=0

(κ− s− 1)(κ− s− 2)u(s).
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If u(κ) = 2κ, then we have

∆−32κ −∆−32κ
∣∣∣
κ=0

=
1

2!

κ−3∑
s=0

(κ− s− 1)(κ− s− 2)2s.

Taking κ = 5, we get

25 − 20 =
1

2!

2∑
s=0

(5− s− 1)(5− s− 2)2s =
1

2!
[4.3.20 + 3.2.2 + 2.1.22],

which is not true. This example shows that ∆−12κ = ∆−22κ = ∆−32κ = 2κ is not

true.

Suppose that equation (3.1) is true for all real ν, it should be true for

positive integer. The correponding example 3.2.6 is not true for the function u

if ∆−ru(κ)
∣∣∣
κ=a

= 0 for all r = 0, 1, 2, · · · ,m(m = ν).

Hence, a closed form for the equation (3.1) has to be arrived atleast for

ν = m(positive integer). In the next theorem we present such betterclosed form

relation.

Theorem 3.2.7. Let f : N(0)→ R be a function. For κ ∈ N(1), if

∆rv(κ) = u(κ),∆−ru(κ)
∣∣∣
κ=0

= Ar, r = 0, 1, 2, · · · , n then we take v(κ) = ∆−ru(κ)

and Also assume that Gn
n(κ) = ∆−nu(κ)−An−An−1

κ(1)

Γ(2)
−An−2

κ(2)

Γ(3)
−· · ·−A1

κ(n−1)

Γ(n)
.

Then, we have a closed form for (3.1) as

Gn
0 (κ)−Gn

0 (0) =
1

(n− 1)!

κ−n∑
s=0

(κ− s− 1)(n−1)u(s), κ− n ≥ 1. (3.51)

Proof: From the proof of Theorem 3.2.3, the equation (3.21) is expressed as

∆−1u(κ)−∆−1u(κ−m) = u(κ− 1) + u(κ− 2) + u(κ− 3) + · · ·+ u(κ−m).
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Assume that κ−m = a and u(κ−m) is fixed.

Now, by the new notation, the above relation becomes

∆−1u(κ)− A1 = u(κ− 1) + u(κ− 2) + u(κ− 3) + u(κ− 4) + · · ·+ u(a) (3.52)

where A1 = ∆−1u(κ)
∣∣∣
κ=a

, is considered as constant.

If we replace κ by κ− 1, κ− 2, κ− 3, · · · and a=0 in (3.52), we can get

∆−1u(κ− 1)− A1 = u(κ− 2) + u(κ− 3) + u(κ− 4) + · · ·+ u(0)

∆−1u(κ− 2)− A1 = u(κ− 3) + u(κ− 4) + u(κ− 5) + · · ·+ u(0)

∆−1u(κ− 3)− A1 = u(κ− 4) + u(κ− 5) + u(κ− 6) + · · ·+ u(0)

∆−1u(κ− 4)− A1 = u(κ− 5) + · · ·+ u(0)

and so on ∆−1u(2)− A1 = u(1) + u(0)

∆−1u(1)− A1 = u(0)

∆−1u(0)− A1 = 0

Adding above expression, we find (as in the proof of Theorem 3.2.3)

∆−2u(κ)−∆−2u(0)−A1κ = (κ− 1)u(0) + (κ− 2)u(1) + · · ·+ 2u(κ− 3) + 1u(κ− 4),

which is the same as

∆−2u(κ)−A2−A1κ = (κ−1)u(0)+(κ−2)u(1)+ · · ·+2u(κ−3)+1u(κ−4), (3.53)

where A2 = ∆−2u(κ)
∣∣∣
κ=0

is considered as constant

If we replace κ by κ − 1, κ − 2, κ − 3, · · · and κ − κ in (3.53) and adding the
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corresponding expressions, we can easily find that

−3

∆ u(κ)− A3 − A2κ− A1
κ(2)

2
=

1

2!

κ−3∑
s=0

(κ− s− 1)(2)u(s),

where A3 = ∆−3u(κ)
∣∣∣
κ=0

is constant

By induction hypothesis, we assume that

−(n−1)

∆ u(κ)− An−1 − An−2κ− An−3
κ(2)

2!
− An−4

κ(3)

3!
− · · · − A1

κ(n−2)

(n− 2)!

=
1

(n− 2)!

κ−(n−1)∑
s=0

(t− s− 1)(n−2)u(s), (3.54)

where Ar = ∆−1u(κ)
∣∣∣
κ=0

, r = 1, 2, 3, · · · , n− 1.

Replacing κ by κ− 1, κ− 2, · · · , κ− κ in (3.55) and using the formula

1(r) + 2(r) + · · ·+ (κ− 1)(r) =
κ(r+1)

(r + 1)

and adding the corresponding expressions, it is easy to arrive

∆−nu(κ)−An−An−1
κ(1)

1!
−An−2

κ(2)

2!
−· · ·−A1

κ(n−1)

(n− 1)!

= Gn
0 (κ)−Gn

0 (0) =
1

(n− 1)!

κ−n∑
s=0

(κ− s− 1)(n−1)u(s), (3.55)

where Ar = ∆−ru(κ)
∣∣∣
κ=0

is constant and the proof is complete.

Corollary 3.2.8. If A15
r are zero for r = 1, 2, · · · , n, then (3.55) becomes (3.1).

Remark 3.2.9. If we denote LHS term of (3.51) as Gn
0 (κ)−Gn

0 (0) = F n
0 (κ), then

(3.55) can be expressed by

F n
0 (κ) =

1

(n− 1)!

κ−a∑
s=0

(κ− s− 1)(n−1)u(s), κ− a− n ∈ N(1). (3.56)
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Corollary 3.2.10. Assume that κ− n− a ∈ N(1). Then, if we denote

Gn(κ) = ∆−nu(κ)− An − An−1
κ(1)

1!
− An−2

κ(2)

2!
− · · · − A1

κ(n−1)

(n− 1)!
. Then we have

Gn(κ)−Gn(a) =
1

(n− 1)!

κ−n∑
s=a

(κ− s− 1)(n−1)u(s), (3.57)

where Ar = ∆−1u(κ)
∣∣∣
κ=0

for r = 1, 2, 3, · · · , n.

Proof: Replacing κ by a in (3.53), we obtain

∆−nu(a)−An−An−1
a(1)

1!
−An−2

a(2)

2!
−· · ·−A1

a(n−1)

(n− 1)!

= Gn(a) =
1

(n− 1)!

a−n∑
s=0

(a− s− 1)n−1u(s). (3.58)

Now (3.56) follows by substracting (3.58)from(3.55).

Corollary 3.2.11. Let J1 = R − Z be the set of all real numbers not containing

negative integers . Let u : J1 → R be a function. Let n be positive integer and

choose κ and a such that κ − n − a ∈ N(1). Let Br = ∆−ru(κ)
∣∣∣
κ=a

and define

Gn
a(κ) = ∆−nu(κ)−Bn −Bn−1

κ(1)

Γ(2)
−Bn−2

κ(2)

Γ(3)
− · · · −B1

κ(n−1)

Γ(n)
. Then, we have

Gn
a(κ)−Gn

a(a) =
1

(n− 1)!

κ−n∑
s=a

(κ− s− 1)(n−1)u(s), κ ∈ J1, κ− n− a ∈ N(1).

Proof: The proof is similar to Theorem 3.2.7. (Repalcing 0 by a in (3.55))

Corollary 3.2.12. Gn
a(κ) is the most general form of ∆−nu(κ) with respect to a,

κ − n − a ∈ N(1) and κ ∈ R − Z. If we denote F n
a (κ) = Gn

a(κ) − Gn
a(a), then we

have

F n
a (κ) =

1

(n− 1)!

κ−n∑
s=a

(κ− s− 1)(n−1)u(s), κ ∈ R, κ− a− n ∈ N(1). (3.59)
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Example 3.2.13. Taking u(κ) = 2κ, ∆−32κ = 2κ, 20 6= 0 in Example 3.2.6 and

using the Theorem 3.2.7, we have

G3
0(κ) = ∆−32κ − A3 − A2

κ(1)

1!
− A1

κ(2)

2!
(3.60)

where Ar = ∆−r2κ
∣∣∣
κ=0

, r = 1, 2, 3

A1 = ∆−12κ
∣∣∣
κ=0

= 2κ
∣∣∣
κ=0

= 1, A2 = ∆−22κ
∣∣∣
κ=0

= 2κ
∣∣∣
κ=0

= 1

and A3 = ∆−32κ
∣∣∣
κ=0

= 2κ
∣∣∣
κ=0

= 1

Substituting A′rs in equation (3.60), we get

G3
0(κ) = 2κ − 1− κ(1)

1!
− κ(2)

2!
.

As in the example 3.2.6, taking κ = 5, we get

G3
0(5) = 25 − 1− 5(1)

1!
− 5(2)

2!
= 32− 1− 5− 5.4

2
= 16.

G3
0(0) = 20 − 1− 0 = 0., and

F 3
0 (5) = 16 =

1

Γ(3)

5∑
s=0

(5− s− 1)(2)2s = G
(3)
0 (5)−G(3)

0 (0).

Hence (3.59) is verified for positive integer κ.

In the following theorem, we derive the result to a base‘a’.

Theorem 3.2.14. Let κ− n− a ∈ N(0) and f : J1 → R be function and

F n
a (κ) = ∆−nu(κ)−Bn −Bn−1

(κ− a)(1)

1!
−Bn−2

(κ− a)(2)

2!
· · · −

B1
(κ− a)(n−1)

(n− 1)!
, κ ∈ R, where Br = ∆−ru(κ)

∣∣∣
κ=a

, . Then, we have

F n
a (κ) =

1

(n− 1)!

κ−n∑
s=a

(κ− s− 1)(n−1)u(s). (3.61)
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Proof: From the Equation (3.21), we have

∆−1u(κ)−∆−1u(κ−m) = u(κ− 1) + u(κ− 2) + u(κ− 3) + · · ·+ u(κ−m) (3.62)

which can be expressed as

∆−1u(κ− 1)−∆−1u(κ−m) = u(κ− 2) + u(κ− 3) + · · ·+ u(κ−m),

∆−1u(κ− 2)−∆−1u(κ−m) = u(κ− 3) + u(κ− 4) + · · ·+ u(κ−m),

∆−1u(κ− 3)−∆−1u(κ−m) = u(κ− 4) + u(κ− 5) + · · ·+ u(κ−m)

and soon. Finally we get

∆−1u(κ−m+ 1)−∆−1u(κ−m) = u(κ−m)

∆−1u(κ−m)−∆−1u(κ−m) = 0

Adding above terms starting from ∆−1u(κ − 1), and replacing u by ∆−1u in (3.62)

and using it, we find that

∆−2u(κ)−∆−2u(κ−m)−m∆−1u(κ−m)

= mu(κ−m)+(m−1)u(κ−m+1)+ · · ·+2u(κ−3)+1u(κ−2).

(3.63)

By taking κ−m = a and hence κ− a = m, (3.63) can be expressed as

∆−2u(κ)−B2 −
(κ− a)(1)

1!
B1 =

κ−2∑
s=a

(κ− s− 1)(1)u(s), (3.64)

where B2 = ∆−2u(κ)
∣∣∣
κ=0

, B1 = ∆−2u(κ)
∣∣∣
κ=a

.

By induction and taking κ ∈ R, κ− n− a ∈ N(0), we obtain

∆−nu(κ)−Bn−Bn−1
(κ− a)(1)

1!
−Bn−2

(κ− a)(2)

2!
· · ·−B1

(κ− a)(n−1)

(n− 1)!
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=
1

(n− 1)!

κ−n∑
s=a

(κ− s− 1)(n−1)u(s), (3.65)

where Br = ∆−ru(κ)
∣∣∣
κ=a

, r = 1, 2, · · ·n.

If we define L.H.S of (3.65) as F n
a (κ),. we find

F n
a (κ) =

1

(n− 1)!

κ−n∑
s=a

(κ− s− 1)(n−1)u(s). (3.66)

From (3.63), we have

∆−2u(κ)−∆−2u(κ−m)−m∆−1u(κ−m) = (m−1)u(κ−m)+(m−1)u(κ−m+1)

+ (m− 2)u(κ−m+ 2) + · · ·+ 2u(κ− 3) + 1u(κ− 2), m = κ− a

which can be expressed as

∆−2u(κ)−∆−2u(κ−m)−m∆−1u(κ−m) = 1u(κ−2)+2u(κ−3)

+ · · ·+ (m− 1)u(κ−m+ 1) + (m− 1)u(κ−m). (3.67)

Replacing κ by κ− 1 and m by m− 1 in (3.67) yields

∆−2u(κ−1)−∆−2u(κ−m)−(m−1)∆−1u(κ−m) = 1u(κ−3)+2u(κ−4)

+ · · ·+ (m− 3)u(κ−m+ 1) + (m− 2)u(κ−m). (3.68)

Similarly,

∆−2u(t−2)−∆−2u(t−m)−(m−2)∆−1u(t−m) = 1u(κ−4)+2u(κ−5)

+ · · ·+ (m− 4)u(κ−m+ 1) + (m− 3)u(κ−m),
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∆−2u(κ−3)−∆−2u(κ−m)−(m−3)∆−1u(t−m) = 1u(κ−5)+2u(κ−6)

+ · · ·+ (m− 5)u(κ−m+ 1) + (m− 4)u(κ−m),

and so on. Finally

∆−2u(κ−m+ 1)−∆−2u(κ−m)− 1∆−1u(κ−m) = 1u(κ−m).

∆−2u(κ−m)−∆−2u(κ−m) = 0.

Adding the above equations starting from (3.68), replacing u by ∆−2u in (3.21) and

using (3.12), we derive

∆−3u(κ)−∆−3u(κ−m)−m
1!

∆−2u(κ−m)−m
(2)

2!
∆−1u(κ−m) =

2(2)

2!
u(κ−3)

+
3(2)

2!
u(κ− 4) +

4(2)

2!
u(κ− 5) + · · ·+ (m− 1)(2)

2!
u(κ−m), m = κ− a (3.69)

By induction hypothesis, we assume that (3.65) is true up-to n− 1. That is,

∆−(n−1)u(κ)−∆−(n−1)u(κ−m)− m(1)

1!
∆−(n−2)u(κ−m)− m(2)

2!
∆−(n−3)u(κ−m)−

· · · − m(n−2)

(n− 2)!
∆−1u(κ−m) =

(n− 2)(n−2)

(n− 2)!
u(κ− n+ 1) +

(n− 1)(n−2)

(n− 2)!
u(κ− n)

+
(n)(n−2)

(n− 2)!
u(κ−n− 1) + · · ·+ (m− 1)(n−2)

(n− 2)!
u(κ−m), m = κ− a, κ− a−n ∈ N(0).

(3.70)

Replacing κ by κ− 1 and m by m− 1 in (3.70) yields

∆−(n−1)u(κ− 1)−∆−(n−1)u(κ−m)− (m− 1)(1)

1!
∆−(n−2)u(κ−m)−

(m− 1)(2)

2!
∆−(n−3)u(κ−m)−· · ·−(m− 1)(n−2)

(n− 2)!
∆−1u(κ−m) =

(n− 2)(n−2)

(n− 2)!
u(κ−n+1)
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+
(n− 1)(n−2)

(n− 2)!
u(κ− n) + · · ·+ (m− 2)(n−2)

(n− 2)!
u(κ−m). (3.71)

Similarly,

∆−(n−1)u(κ− 2)−∆−(n−1)u(κ−m)− (m− 2)(1)

1!
∆−(n−2)u(κ−m)−

(m− 2)(2)

2!
∆−(n−3)u(κ−m)−· · ·−(m− 2)(n−2)

(n− 2)!
∆−1u(κ−m) =

(n− 2)(n−2)

(n− 2)!
u(κ−n+1)

+
(n− 1)(n−2)

(n− 2)!
u(κ− n) + · · ·+ (m− 2)(n−2)

(n− 2)!
u(κ−m).

and so on. Finally, we arrive

∆−(n−1)u(κ−m+1)−∆−(n−1)u(κ−m)− 1(1)

1!
∆−(n−2)u(κ−m)− 1(2)

2!
∆−(n−3)u(κ−m)

− · · · − 1(n−2)

(n− 2)!
∆−1u(κ−m) =

(n− 2)(n−2)

(n− 2)!
u(κ−m).

∆−(n−1)u(κ−m)−∆−(n−1)u(κ−m) = 0.

Adding all the above relations starting from (3.71), replacing u by ∆−(n−1)u in (3.21)

and using (3.12), we arrive our required result as below:

∆(n−1)u(κ− 1) + ∆(n−1)u(κ− 2) + · · ·+ ∆(n−1)u(κ−m)−m∆−(n−1)u(κ−m)

−
{

(m− 1)(1)

1!
+

(m− 2)(1)

1!
+ · · ·+ 1(1)

1!

}
∆−(n−2)u(κ−m)

−
{

(m− 1)(2)

2!
+

(m− 2)(2)

2!
+ · · ·+ 1(2)

2!

}
∆−(n−3)u(κ−m)− · · ·

−
{

(m− 1)(n−2)

(n− 2)!
+

(m− 2)(n−2)

(n− 2)!
+ · · ·+ 1(n−2)

(n− 2)!

}
∆−1u(κ−m)

= {(m− 2)(n−2)

(n− 2)!
+

(m− 3)(n−2)

(n− 2)!
+ · · ·+ (n− 2)(n−2)

(n− 2)!
}u(κ−m)+

{(m− 3)(n−2)

(n− 2)!
+

(m− 4)(n−2)

(n− 2)!
+ · · ·+ (n− 2)(n−2)

(n− 2)!
}∆−1u(κ− (m− 1))+

{(m− 4)(n−2)

(n− 2)!
+

(m− 5)(n−2)

(n− 2)!
+ · · ·+ (n− 2)(n−2)

(n− 2)!
}∆−1u(κ− (m− 2))+
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· · ·+ (n− 2)(n−2)

(n− 2)!
u(κ− n− 1),

From (3.12) and (n− 2)(n−1) = 0 and (3.21) the above expression becomes

∆−nu(κ)−∆−nu(κ−m)− m(1)

1!
∆−(n−1)u(κ−m)− m(2)

2!
∆−(n−2)u(κ−m)

−m
(3)

3!
∆−(n−3)u(κ−m)− · · · − m(n−1)

(n− 1)!
∆−1u(κ−m) =

(m− 1)(n−1)

(n− 1)!
u(κ−m)

+
(m− 2)(n−1)

(n− 1)!
u(κ−m+1)+

(m− 3)(n−1)

(n− 1)!
u(κ−m+2)+· · ·+ (n− 1)(n−1)

(n− 1)!
u(κ−n−1).

(3.72)

By taking κ−m = a, κ− a− n ∈ N(0), (3.72) can be expressed as

∆−1u(κ)−Bn −
(κ− a)(1)

1!
Bn−1 −

(κ− a)(2)

2!
Bn−2 − · · · −

(κ− a)(n−1)

(n− 1)!
B1

=
(κ− a− 1)(n−1)

(n− 1)!
u(a) +

(κ− a− 2)(n−1)

(n− 1)!
u(a+ 1) + · · ·+ (n− 1)(n−1)

(n− 1)!
u(κ− n− 1),

(3.73)

where Br = ∆−ru(κ−m), r = 1, 2, 3, · · · , n and which completes the proof.

In the following theorem, we discuss higher order delta invere of constant function

u(κ) = 1.

Example 3.2.15. Consider the function u(κ) = 4κ. Then ∆4κ = 3.4κ

yields ∆−ru(κ) = 3−r4κ, r = 1, 2, · · · .

Taking κ = 4.5, a = 1.5, n = 3, we get

B1 = ∆−14κ
∣∣∣
κ=1.5

=
(1

3

)
4(1.5) =

8

3

B2 = ∆−24κ
∣∣∣
κ=1.5

=
(1

9

)
4(1.5) =

8

9

B3 = ∆−34κ
∣∣∣
κ=1.5

=
( 1

27

)
4(1.5) =

8

27
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F
(3)
1.5 (κ) = ∆−34κ −B3 −B2

(κ− a)(1)

1!
−B1

(κ− a)(2)

2!

F
(3)
1.5 (4.5) =

44.5

27
− 8

27
− 8

9
.
3(1)

1!
− 8

3
.
3(2)

2!
=

44

27
.2− 8

27
− 8

9
.3− 8

3

3.2

2!

=
8

27
[43 − 1− 9]− 8 = 8× 2− 8 = 8 =

1

2!

4.5∑
s=1.5

(4.5− s− 1)(2)4s.

Hence, (3.67) is verified.

Example 3.2.16. Consider the constant function u(κ) = 1, κ ∈ R.

Since κ(0) = 1, we have u(κ) = κ(0), u(0) = 1, κ(0) = 1, a = 0.

∆−1(1) = ∆−1κ(0) =
κ(1)

1!
⇒ A1 = 0.

∆−2(1) = ∆−2κ(0) =
κ(2)

2!
⇒ A2 = 0.

∆−3(1) = ∆−3κ(0) =
κ(3)

3!
⇒ A3 = 0.

G3
0(κ) =

κ(3)

3!
− κ(2)

2!
, G3

0(0) = 0, κ = 10.

G3
0(10) =

10(3)

3!
− 10(2)

2!
=

10.9.8

3.2
− 10.9

2
= 120.

F 3
0 (10) =

1

2

7∑
s=0

Γ(10− s)
Γ(10− s− 2)

u(s) =
1

2

7∑
s=0

(9− s)!
(7− s)!

.1

=
1

2

7∑
s=0

(9− s)(8− s)

= 9.4 + 4.7 + 7.3 + 3.5 + 5.2 + 2.3 + 3.1 + 1

= 36 + 28 + 21 + 15 + 10 + 6 + 3 + 1 = 120.

In the following example we assume the origin ‘a’=0.

Example 3.2.17. Let u(κ) = 1, for all κ ∈ R, a = 1.5 and using (3.4), we have

∆−1(1) = ∆−1(κ− a)(0) =
(κ− a)(1)

1!
, B1 =

(κ− a)(1)

1!

∣∣∣
κ=a

= 0

∆−2(1) = ∆−2(κ− a)(0) =
(κ− a)(2)

2!
, B2 =

(κ− a)(2)

2!

∣∣∣
κ=a

= 0
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∆−3(1) = ∆−3(κ− a)(0) =
(κ− a)(3)

3!
, B3 =

(κ− a)(3)

3!

∣∣∣
κ=a

= 0

By (3.65), we have

∆−3(1)−B3 −B2
(κ− a)(1)

1!
−B1

(κ− a)(1)

1!
=

1

2

κ−3∑
s=a

(κ− s− 2)(0)(1).

(κ− a)(3)

3!
=

1

2

κ−3∑
s=a

(κ− s− 1)(κ− s− 2), t− a ∈ N(0). (3.74)

If we take κ = 8.5, a = 1.5, (3.74) becomes
(8.5− 1.5)(3)

3!
=

1

2

5.5∑
s=1.5

(7.5− s)(6.5− s).

7(3)

3!
=

1

2
[6(5) + 5(4) + 4(3) + 3(2) + 2(1)] = 3(5) + 5(2) + 2(3) + 3 + 1 = 35.

Remark 3.2.18. From the property of Gamma function, we have

Γ(κ+ 1) = κ(κ− 1)(κ− 2) · · · (κ− r + 1)Γ(κ− r + 1),which yields

κ(r) =
Γ(κ+ 1)

Γ(κ− r + 1)
if r ∈ N(1).

Definition 3.2.19. The falling factorial for real index ν is defined by

κ(ν) =
Γ(κ+ 1)

Γ(κ+ 1− ν)
, κ+ 1− ν /∈ {0,−1,−2, · · · }.

Theorem 3.2.14 motivates us to find the exact form of LHS of (3.1).

Let u be a real valued function, κ and a belongs to domain of u such that κ−a ∈ N(0).

If there exists a real valued function F ν
a , depending on a and ν > 0 such that

F ν
a (κ) =

1

Γ(ν)

κ−ν∑
s=a

Γ(κ− s)
Γ(κ− s− (ν − 1))

u(s), (3.75)

then F ν
a (κ) is called as exact form of νth fractional sum of u(κ) based at a.
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(i) If u(κ) = 1, κ ∈ R and ν = n ∈ N(1) then Example 3.2.17 shows that

F n
a (κ) =

(κ− a)(n)

Γ(n+ 1)
=

1

Γ(n)

κ−n∑
s=a

Γ(κ− s)
Γ(κ− s− (n− 1))

u(κ).

(ii) If u(κ) = κ(ν), κ ∈ R and ν = n ∈ N(1) then

F n
a (κ) =

(κ− a)(ν+n)

(ν + n)(n)
=

1

Γ(n)

κ−n∑
s=a

Γ(κ− s)
Γ(κ− s− (n− 1))

u(s).

(iii) If u(κ) = (κ− a)(ν), κ ∈ R, κ− a ∈ N(1) and ν = n ∈ N(1) then

F n
a (κ) =

(κ− a)(ν+n)

(ν + n)(n)
=

1

Γ(n)

κ−n∑
s=a

Γ(κ− s)
Γ(κ− s− (n− 1))

(s− a)(ν).

3.3 Higher Order Alpha-Delta Operator

The forward difference or operators is applicable in solving the problems in

mathematical sciences, physical sciences, life sciences, scientific engineering. The

numerical solution of m-th order difference equation is ∆m
` v(κ) = u(κ), when

v(0) = 0 is obtained by

∆−m` u(κ)
∣∣t
0

=
s−m∑
r=0

Γ(m+ r)

Γ(r + 1)Γ(m)
u(κ− (m+ r)`), (3.76)

where ∆`u(κ) = u(κ+ `)− u(κ), and Γ is a Gamma function.

It is also possible to develop fractional order anti-difference corresponding to

equation (3.76) by replacing the integer m into real number ν > 0. The

corresponding numerical solution for ν-th order alpha-difference equation ∆α,`v(κ) =
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u(κ) has been developed by many authors. When α = 1, ` = 1, the alpha delta

operator becomes the usual forward difference operator ∆. For more details on alpha

difference operator and its inverse one can refer [1, 6, 8, 34].

3.4 Finite Fractional Order Difference

In this section, first we present anti-difference ∆, ∆` and ∆α(`) for arriving at the

general formula for numerical solution of fractional difference equation ∆ν v(κ) =

u(κ), when v(0) =
ν

∆u(t)
∣∣
t=0

= 0.

Lemma 3.4.1. For any positive integer n, we have

1(n) + 2(n) + 3(n) + · · ·+ κ(n) =
(κ+ 1)(n+1)

n+ 1
, (3.77)

where κ(n) =
n−1∏
r=0

(κ− r).

Proof. The proof follows by induction method.

Theorem 3.4.2. Let κ = s`, 0 < ` <∞, m < s, u(0) = 0 and m ∈ N(1), Then

∆−m` u(κ) =
s−m∑
r=0

Γ(m+ r)

Γ(r + 1)Γ(m)
u(κ− (m+ r)`). (3.78)

Proof. Let ` be any real in (0,∞). Then, ∆`u(κ) = u(κ+ `)− u(κ)

Since κ = s`, where s ∈ N(0), we take

v(κ) = u(κ− `) + u(κ− 2`) + u(κ− 3`) + · · ·+ u(0) (3.79)
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v(κ+ `) = u(κ) + u(κ− `) + u(κ− 2`) + · · ·+ u(0) (3.80)

(3.79)− (3.80)⇒ ∆`v(κ) = u(κ), which gives ∆−1
` u(κ) = v(κ),

where v(κ) is given in (3.79).

Hence ∆−1
` u(κ) = u(κ− `) + u(κ− 2`) + u(κ− 3`) + · · ·+ u(0). (3.81)

Taking ∆−1
` on both sides,

∆−2
` u(κ) = ∆−1

` u(κ− `) + ∆−1
` u(κ− 2`) + ∆−1

` u(κ− 3`) + · · ·+ ∆−1
` u(0)

By applying (3.81) for κ− `, we get

∆−2
` u(κ) = u(κ− 2`) + u(κ− 3`) + u(κ− 4`) + · · ·+ u(0)+

+u(κ− 3`) + u(κ− 4`) + u(κ− 5`) + · · ·+ u(0)+

+u(κ− 4`) + u(κ− 5`) + u(κ− 6`) + · · ·+ u(0)+

...

+u(3`) + u(2`) + u(`) + u(0)+

+u(2`) + u(`) + u(0) + u(`) + u(0) + u(0)

Grouping the terms, we find that

∆−2
` u(κ) =

1(1)

1!
u(κ− 2`) +

2(1)

1!
u(κ− 3`) + · · ·+ (s− 1)(2)

1!
u(0), where κ− s` = 0

Again taking ∆−1
` on both sides and by using (3.77), we get

∆−3
` u(κ) =

2(2)

1!
u(κ− 3`) +

3(2)

1!
u(κ− 4`) + · · ·+ (s− 1)(2)

1!
u(0), where κ− s` = 0

Proceeding like this, we arrive

∆−m` u(κ) =
(m− 1)(m−1)

(m− 1)!
u(κ−m`) +

m(m−1)

(m− 1)!
u(κ− (m+ 1)`)

+ · · ·+ (s− 1)(m−1)

(m− 1)!
u(0), where κ− s` = 0
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=
Γ(m)

Γ(m− (m− 1))Γ(m)
u(κ−m`) +

Γ(m+ 1)

Γ(m+ 1− (m− 1))Γ(m)

× u(κ− (m+ 1)`) +
Γ(m+ (s−m))

Γ(m+ (s−m)− (m− 1))Γ(m)
u(0),

which gives (3.78).

Corollary 3.4.3. Assume that ∆v(κ) = u(κ) and v(0)=0. The m-th order delta

inverse of u(κ) is defined as

∆−mu(κ) =
κ−m∑
r=0

(m− 1 + r)(m−1)

(m− 1)!
u(κ− (m+ r)), n ∈ N(m). (3.82)

Proof. The proof follows by taking ` = 1 in Theorem 4.2.2.

Corollary 3.4.4. Let κ > m`, 0 < ` <∞, u(κ−m`) ∈ N, Then

∆−ν` u(κ)
∣∣∣κ
κ−m`

=
m∑
r=0

(ν + r)(ν)

`ν
u(κ− `− r`), (3.83)

where n(ν) =
Γ(n+ 1)

Γ(n+ 1− ν)
.

3.5 Higher order `- Delta operator

In this section, we arrive at the general form of fractional order delta operator

on trigonometric function.

Theorem 3.5.1. For positive real m and ` 6= 0, we have

∆m
` sinκ = 2m sinm(

`

2
) sin(

mπ

2
+
m`

2
+ κ) (3.84)
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Proof. By the linear operator ∆` on sinκ, we have ∆` sinκ = sin(κ+ `)− sinκ

which is similar to ∆` sinκ = 2 cos(κ+`+κ
2

) sin(κ+`−κ
2

) = 2 cos(κ+ `
2
) sin( `

2
). Thus,

∆` sinκ = 2 sin(
`

2
) sin(

π

2
+
`

2
+ κ). (3.85)

Taking ∆` again on both sides of (3.85), we get

∆2
` sinκ = 2 sin(

`

2
)∆` sin(

π

2
+
`

2
+ κ).

While solving the above relation, we obtain

∆2
` sinκ = 22 sin2(

`

2
) sin(2

π

2
+ 2

`

2
+ κ). (3.86)

Again taking ∆` again on both sides of (3.86), we get

∆3
` sinκ = 23 sin3(

`

2
) sin(

3π

2
+

3`

2
+ κ). (3.87)

Proceeding the steps up-to m times, we find

∆m
` sinκ = 2m sinm(

`

2
) sin(

mπ

2
+
m`

2
+ κ). (3.88)

Theorem 3.5.2. For positive integer m and ` 6= 0, we have

∆m
` cosκ = 2m sinm(

`

2
) cos(

mπ

2
+
m`

2
+ κ). (3.89)

Proof. The proof is similar to Theorem 3.5.1.
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Example 3.5.3. Taking ν = 20 in (3.84) and (3.89), we get

∆20
` (sinκ) = 220 sin20( `

2
) sin(20π

2
+ 20`

2
+ κ)

∆20
` (cosκ) = 220 sin20( `

2
) cos(20π

2
+ 20`

2
+ κ)

Remark: We can extend the relations (3.84) and (3.89) to negative integers

also.

3.6 Inverse of Higher Order Alpha Delta Opera-

tor

In this section, we develop the theory of higher order of alpha delta operator

and its sums on trigonometric functions.

Definition 3.6.1. Let ` > 0 and u, v be two functionsand α 6= 0. Then the alpha

delta operator ∆α,` on u(κ) is defined by

∆α,±`u(κ) = u(κ± `)− αu(κ). (3.90)

If ∆α,±`v(κ) = u(κ), then the inverse is ∆−1
α,±`u(κ) = v(κ) + c, c is constant and

∆−1
α,±`u(κ)|da = v(d)− αv(a). (3.91)

Theorem 3.6.2. The higher order of alpha delta operator on sinκ is obtained as

∆m
α,` sinκ = sinm ` sin

(mπ
2

+ κ
)
, α = cos `. (3.92)
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Proof. From the definition of ∆α,`, we have

∆α,` sinκ = sin(κ+ `)− α sinκ and taking α = cos `, we find

∆α,` sinκ = sinκ cos `+ cosκ sin `− cos ` sinκ = cosκ sin `

= sin ` sin
(π

2
+ κ
)

.

Similarly, ∆2
α,` sinκ = sin2

` sin(
2π

2
+ n).

In general, ∆m
α,` sinκ = sinm ` sin

(mπ
2

+ κ
)

, which is (3.92).

Theorem 3.6.3. The higher order alpha delta operator on cosκ is obtained as

∆m
α,` cosκ = sinm ` cos

(mπ
2

+ κ
)
, α = cos `. (3.93)

Proof. Since ∆α,` cosκ = cos(κ+ `)− α cosκ and taking α = cos `,

∆α,` cosκ = cosκ cos `− sinκ sin `− cos ` cosκ = − sinκ sin `

= sin ` cos
(π

2
+ κ
)

.

∆2
α,` cosκ = sin2 ` cos

(2π

2
+ κ
)

.

In general, ∆m
α,` cosκ = sinm ` cos

(mπ
2

+ κ
)

, which is (3.93).

Theorem 3.6.4. The higher order alpha delta operator on sin aκ is

∆m
α,` sin aκ = sinm a` sin a

(mπ
2

+ κ
)
, α = cos `,m ∈ N(1). (3.94)

Proof. Since ∆α,` sin aκ = sin a(κ+ `)− α sin aκ, and taking α = cos a`

∆α,` sin aκ = sin aκ cos a`+ cos aκ sin a`− α sin aκ = cos aκ sin a`

= sin a` sin a
(π

2
+ κ
)

.
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∆2
α,` sin aκ = sin2 a` sin a(

2π

2
+ n).

In general, ∆m
α,` sin aκ = sinm a` sin a

(mπ
2

+ κ
)

, which is (3.94).

Theorem 3.6.5. The higher order alpha deltaa operator on cos aκ is

∆m
α,` cos aκ = sinm a` cos a

(mπ
2

+ κ
)
, α = cos `. (3.95)

Proof. From ∆α,` cos aκ = cos a(κ+ `)− α cos aκ and α = cos a`, we have

∆α,` cos aκ = cos aκ cos a`− sin aκ sin a`− cos a` cos aκ = − sin aκ sin a`

= sin a` cos a
(π

2
+ κ
)

.

∆2
α,` cosκ = sin2 a` cos a

(2π

2
+ κ
)

.

In general, ∆m
α,` cos aκ = sinm a` cos a

(mπ
2

+ κ
)

, which is (3.95).

Theorem 3.6.6. The higher order inverse of alpha-delta operator on the sine

function is

∆−mα,` sinκ = sin−m ` sin
(
κ− mπ

2

)
, α = cos `. (3.96)

Proof. From ∆m
α,` sinκ = sinm ` sin(mπ

2
+ κ) and m = −m,

∆−mα,` sinκ =
sin
(
κ− mπ

2

)
sinm `

∆m
α,` sin

(
κ− mπ

2

)
= sinκ sinm `.

Similarly ∆−mα,` sinκ = sin−m ` sin
(
κ− mπ

2

)
, which is (3.96).

Theorem 3.6.7. For any real function u(κ) defined on R and m ∈ N(1)

∆−1
α,`u(κ)− αm∆−1

α,`u(κ−m`) =
m∑
r=1

αr−1u(κ− r`). (3.97)
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Proof. From the definition of inverse of alpha delta operator we have,

∆−1
α,`u(κ) = v(κ), v(κ+ `) = u(κ) + αv(κ). (3.98)

Replacing κ by κ− `, κ− 2`, κ− 3`, · · · , κ−m` in (3.98),

v(κ) = u(κ− `) + αu(κ− 2`) + α2u(κ− 3`) + α3u(κ− 4`) + · · ·

+ αm−1u(κ−m`) + αmv(κ−m`)

v(κ)− αmv(κ−m`) = u(κ− `) + αu(κ− 2`) + α2u(κ− 3`) + α3u(κ− 4`)

+ · · ·+ αm−1u(κ−m`)

∆−1
α,`u(κ)− αm∆−1

α,`u(κ−m`) = u(κ− `) + αu(κ− 2`) + α2u(κ− 3`)

+ α3u(κ− 4`) + · · ·+ αm−1u(κ−m`)

which gives (3.97).

Example 3.6.8. If u(κ) = sinκ, then the equation (3.97) becomes

∆−1
α,` sinκ− αm∆−1

α,` sin(κ−m`) =
∑m

r=1 α
r−1 sin(κ− r`)

Taking κ = 5, α = cos `, ` = 1,m = 2, we have

∆−1
α,` sinκ− (cos `)m∆−1

α,` sin(κ−m`)

= sin−1(1) sin(5− π
2
)− sin−1(1)(cos(1))2 sin(3− π

2
)

= sin−1(1)
[

sin(5− π
2
)− (cos(1))2 sin(3− π

2
)
]

sin(4) + cos(1) sin(3) =
sin(−85)− cos2(1) sin(−87)

sin(1)
⇒ 0.1221 = 0.1221.

Thus, we extend the theory developed in chapter 3 to the `- alpha delta

operator and arriv at the higher order alpha delta operator and summation formula

on trigonometric functions.



Chapter 4

Properties of Extorial Function

In this chapter, we introduce a new function called extorial function. Also

we arrive as certain results involving the above function and its properties.

4.1 The ` - Extorial function

The newly defined `-Extorial function is arrived by replacing the polynomial

κn by polynomial factorial function κ
(n)
` in the exponential function eκ. The formal

definition of extorial function is given below.

Definition 4.1.1. The `-extorial function denoted as e(κ
(n)
` ) is defined as

e(κ
(n)
` ) = 1 +

κ
(n)
`

1!
+
κ

(2n)
`

2!
+
κ

(3n)
`

3!
+ · · ·+∞, (4.1)

where |`| ≤ 1 and n, κ ∈ R.

68
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Lemma 4.1.2. [15] Let |`| ≤ 1 and κ a real variable. Then the following holds.

(i) e(κ
(1)
0 )=eκ, (ii) e((−κ)

(1)
1 ) = −∞, (iii) e(κ−1(1)) =∞,

(iv) e((−κ)
(1)
` ) = 1−

κ
(1)
−`

1!
+
κ

(2)
−`

2!
−
κ

(3)
−`

3!
+ · · ·+∞,

(v) e((−κ)
(1)
−`) = 1− κ

(1)
`

1!
+
κ

(2)
`

2!
− κ

(3)
`

3!
+ · · ·+∞,

(vi) ∆`e(κ
(1)
` ) = `e(κ

(1)
` ), (vii) ∆n

` e(κ
(n)
` ) = `ne(κ

(1)
` ).

Lemma 4.1.3. [15] Let κ be the multiple of `. Then e(κ
(1)
` ) can be expressed as

finite series such that (i) e(κ
(1)
` ) =

a∑
r=0

κ
(r)
`

r!
.

(ii) For any ` ∈ N, e(−`)(1)
(−`) = 1− ` and (iii) For κ1, κ2 ∈ R and ` ∈ (0, 1),

e(κ1 + κ2)
(1)
` = e(κ1)

(1)
` e(κ2)

(1)
` . (4.2)

By expanding the terms and making simplification, we get the proof.

4.2 The `- Extorial for Negative Index

In this section, we define extorial function for negative index and find relation

among the delta operators.

Definition 4.2.1. If κ
(rn)
` 6= 0 for n > 0 and r ∈ N, then the negative index extorial

function is defind as

e(κ
(−n)
` ) = 1 +

1

1!

1

κ
(n)
`

+
1

2!

1

κ
(2n)
`

+
1

3!

1

κ
(3n)
`

+ · · ·∞ (4.3)
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Remark 4.2.2. (i)e(1
(−1)
−1 ) =

∞∑
r=0

1

(r!)2
, (ii)e(−1

(−1)
1 ) =

∞∑
r=0

(−1)r
1

(r!)2
,

(iii)e((mκ)
(1)
(m`)) = 1 +

(mκ)
(1)
(m`)

1!
+

(mκ)
(2)
(m`)

2!
+

(mκ)
(3)
(m`)

3!
+ · · ·+∞.

Lemma 4.2.3. Let κ
(rn)
` 6= 0, where n ∈ N and |`| < 1. Then,

∆`e(κ
(−n)
` ) =

−n`
(κ+ `)

(n+1)
`

e((κ− n`)(−n)
` ). (4.4)

Proof. From (4.3), e(κ
(−n)
` ) = 1 +

1

1!

1

κ
(n)
`

+
1

2!

1

κ
(2n)
`

+
1

3!

1

κ
(3n)
`

+ · · ·+∞

∆`(e(κ
(−n)
` )) = ∆`(1 +

1

1!

1

κ
(n)
`

+
1

2!

1

κ
(2n)
`

+
1

3!

1

κ
(3n)
`

+ · · ·+∞)

= (1− 1) + ∆`
1

κ
(n)
`

+ ∆`
1

2!

1

κ
(2n)
`

+ ∆`
1

3!

1

κ
(3n)
`

+ · · ·

=
1

1!

−n`
(κ+ `)

(n+1)
`

+
1

2!

−2n`

(κ+ `)
(2n+1)
`

+
1

3!

−3n`

(κ+ `)
(3n+1)
`

+ · · ·

=
−n`

(κ+ `)
(n+1)
`

(
1 +

1

1!

1

(κ− n`)(n)
`

+
1

2!

1

(κ− n`)(2n)
`

+ · · ·

)
,

which gives (4.4).

Lemma 4.2.4. Let κ and ` > 0. Then any positive κ and ` ∈ N, we have

e(−κ(−1)
` ) = 1− 1

1!

1

κ
(1)
`

+
1

2!

1

κ
(2)
`

− 1

3!

1

−κ(3)
`

+ · · ·∞.

The proof follows from the definition of extorial function.

4.3 Higher Order Extorial and its Difference

In this section we define higher order extorial function apply ∆` on it and obtain

some results relevant results.
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Definition 4.3.1. For ` ∈ (−1, 1) and κ ∈ R, the nth order `-extorial function

denoted as en(κ`) is defined as

en(κ`) = 1 +
κ

(n)
`

n!
+
κ

(2n)
`

(2n)!
+
κ

(3n)
`

(3n)!
+ · · ·+∞. (4.5)

From the definition of extorial function, we obtain following lemma.

Lemma 4.3.2. For any real κ and `, n ∈ N, we have

(i) en(−κ`) =


en(κ(−`)) if n is even

1−
κ

(n)
(−`)

n!
+
κ

(2n)
(−`)

(2n)!
−
κ

(3n)
(−`)

(3n)!
+ · · · if n is odd

and

(ii) en(−κ(−`)) =


en(κ(`)) if n is even

1− (κ)
(n)
`

n!
+

(κ)
(2n)
`

2n!
− (κ)

(3n)
`

3n!
+ · · · if n is odd

Lemma 4.3.3. Let κ ∈ R and n, ` ∈ N. Then, we have

∆`en(κ`) = `
∞∑
m=1

κ
(mn−1)
`

(mn− 1)!
, nm 6= 1.

Proof. We shall prove this by induction method

e2(κ`) = 1 +
κ

(2)
`

2!
+
κ

(4)
`

4!
+
κ

(6)
`

6!
+ · · ·+∞

∆`e2(κ`) = ∆`
κ

(2)
`

2!
+ ∆`

κ
(4)
`

4!
+ ∆`

κ
(6)
`

6!
+ · · ·+∞ = `

[
κ

(1)
`

1!
+
κ

(3)
`

3!
+
κ

(5)
`

5!
+ · · ·

]

e3(κ`) = 1 +
κ

(3)
`

3!
+
κ

(6)
`

6!
+
κ

(9)
`

9!
+ · · ·+∞

∆`e3(κ`) = ∆`
κ

(3)
`

3!
+ ∆`

κ
(6)
`

6!
+ ∆`

κ
(9)
`

9!
+ · · ·+∞ = `

[
κ

(2)
`

2!
+
κ

(5)
`

5!
+
κ

(8)
`

8!
+ · · ·

]
In general, we find for n ≥ 1

∆`en(κ`) = `

[
κ

(n−1)
`

(n− 1)!
+

κ
(2n−1)
`

(2n− 1)!
+

κ
(3n−1)
`

(3n− 1)!
+ · · ·

]
= `

∞∑
m=1

κ
(mn−1)
`

(mn− 1)!
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Lemma 4.3.4. For any positive integer m, we have ∆m
` em(κ`) = `mem(κ`).

Proof. ∆`e1(κ`) = 0 + ∆`
κ

(1)
`

1!
+ ∆`

κ
(2)
`

2!
+ ∆`

κ
(3)
`

3!
+ · · · = `e1(κ`).

∆`e2(κ`) = 0 + ∆`
κ

(2)
`

2!
+ ∆`

κ
(4)
`

4!
+ ∆`

κ
(6)
`

6!
+ · · · = 2`κ`(1)

2!
+

4`κ`(3)

4!
+

6`κ`(5)

6!
+ · · ·

∆2
`e2(κ`) =

2`(`κ
(0)
` )

2!
+

4`(3`κ
(2)
` )

4!
+

6`(5`κ
(4)
` )

6!
+ · · · = `2e2(κ`), which yields

∆m
` em(κ`) = `mem(κ`).

Lemma 4.3.5. For positive m and real κ, we have ∆
(−m)
` em(κ`) =

em(κ`)

`m
, ` ∈ N.

Proof. From the lemma (4.3.4), we find ∆m
` em(κ`) = `mem(κ`).

Taking ∆−m` on both sides, we get

∆−m` (∆m
` em(κ`)) = ∆−m` (`mem(κ`)), which gives ∆

(−m)
` em(κ`) =

em(κ`)

`m
.

Definition 4.3.6. For |`| < 1, and n ∈ N, e(−n)(k`) is defined as

e(−n)(κ`) = 1 +
1

n!

1

κ
(n)
`

+
1

(2n)!

1

κ
(2n)
`

+
1

(3n)!

1

κ
(3n)
`

+ · · ·+∞. (4.6)

Lemma 4.3.7. For ` ∈ (−1, 1) and positive κ, we have

∆`e(−n)(κ`) = −`
[ 1

(n− 1)!

1

(κ+ `)
(n+1)
`

+
1

(2n− 1)!

1

(κ+ `)
(2n+1)
`

+
1

(3n− 1)!

1

(κ+ `)
(3n+1)
`

+ · · ·
]

Proof. Putting n = 1 in (4.6), we get

e(−1)(κ`) = 1 +
1

1!

1

κ
(1)
`

+
1

2!

1

κ
(2)
`

+
1

3!

1

κ
(3)
`

+ · · ·+∞

∆`e(−1)(κ`) = 1 + ∆`
1

1!

1

κ
(1)
`

+ ∆`
1

2!

1

κ
(2)
`

+ ∆`
1

3!

1

κ
(3)
`

+ · · ·+∞



4. Properties of Extorial Function 73

= −`

[
1

(κ+ `)
(2)
`

+
1

1!

1

(κ+ `)
(3)
`

+
1

2!

1

(κ+ `)
(4)
`

+ · · ·

]
.

Putting n = 2 in (4.6), we get

e(−2)(κ`) = 1 +
1

2!

1

κ
(2)
`

+
1

4!

1

κ
(4)
`

+
1

6!

1

κ
(6)
`

+ · · ·+∞

∆`e(−2)(κ`) = 1 + ∆`
1

2!

1

κ
(2)
`

+ ∆`
1

4!

1

κ
(4)
`

+ ∆`
1

6!

1

κ
(6)
`

+ · · ·+∞

= −`

[
1

1!

1

(κ+ `)
(3)
`

+
1

3!

1

(κ+ `)
(5)
`

+
1

5!

1

(κ+ `)
(7)
`

+ · · ·

]
.

Putting n = 3 in (4.6), we get

e(−3)(κ`) = 1 +
1

3!

1

κ
(3)
`

+
1

6!

1

κ
(6)
`

+
1

9!

1

κ
(9)
`

+ · · ·+∞

∆`e(−3)(κ`) = 1 + ∆`
1

3!

1

κ
(3)
`

+ ∆`
1

6!

1

κ
(6)
`

+ ∆`
1

9!

1

κ
(9)
`

+ · · ·+∞

= −`

[
1

2!

1

(κ+ `)
(4)
`

+
1

5!

1

(κ+ `)
(7)
`

+
1

8!

1

(κ+ `)
(10)
`

+ · · ·

]
.

In general,

∆`e(−n)(κ`) = −`
[ 1

(n− 1)!

1

(κ+ `)
(n+1)
`

+
1

(2n− 1)!

1

(κ+ `)
(2n+1)
`

+
1

(3n− 1)!

1

(κ+ `)
(3n+1)
`

+ · · ·
]
.

4.4 Extorial Type Solution of Difference Equation

In this section, we obtain extorial type solutions of higher order linear

`−difference equations with constant coefficients.

Consider the nth order linear difference equation

(
an

∆n
`

`n
+ an−1

∆n−1
`

`n−1
+ · · ·+ a0

)
u(κ) = e1(tκ)t`, (4.7)
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where a′is for i = 1, 2, 3, ..., n are constants. Now we consider the homogenous

equation (
an

∆n
`

`n
+ an−1

∆n−1
`

`n−1
+ · · ·+ a0

)
u(κ) = 0. (4.8)

Assume that u(κ) = e1((mκ)(m`) as solution of (4.8). Then we get

(
an

∆n
` e1((mκ)(m`)

`n
+ an−1

∆n−1
` e1((mκ)(m`)

`n−1
+ · · ·+ a0e1((mκ)(m`)

)
u(κ) = 0.

(4.9)

Now ∆`e1(mκ)(m`) = m`e1(mκ)(m`), ∆2
`e1(mκ)(m`) = (m`)2e1(mκ)(m`).

In general, ∆n
` e1(mκ)(m`) = (m`)ne1(mκ)(m`).

Substituting the values in (4.9), we get

an
`n

(m`)ne1(mκ)m` +
an1

`n−1
(m`)n−1e1(mκ)m` + · · ·+ a0e1(mκ)m` = 0,

which gives

(an
`n

(m`)n +
an1

`n−1
(m`)n−1 + · · ·+ a0

)
= 0. (4.10)

The auxiliary equation for (4.10) is obtained as

anm
n + an−1m

n−1 + · · ·+ a0 = 0. (4.11)

Therefore, suppose that m is a root of (4.11), e1(mκ)(m`) is solution of (4.8).

To find particular solution, since

∆`e1(tκ)t` = e1(tκ)(t`)(∆`e1(tκ)(t`)−1),∆2
`e1(tκ)(t`) = e1(tκ)(t`)(∆`e1(tκ)(t`)−1)2

and in general, ∆n
` e1(tκ)(t`) = e1(tκ)(t`)(∆`e1(tκ)(t`) − 1)n, we get[

an∆n
` + an−1∆n−1

` + · · ·+ a0

]
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e1(tκ)(t`)

ane1((t`)− 1)n + an−1e1((t`)− 1)n−1 + · · ·+ a0

}
= e1(tκ)(t`).

Hence the particular solution of (4.7) is obtained as

u(κ) =
e1(tκ)(t`)

ane1((t`)− 1)n + an−1e1((t`)− 1)n−1 + · · ·+ a0

.

Case 1 : Suppose zeros are real and different,then the complementary function for

(4.7) is u(κ) = A1e1(m1κ)(m1`) + A2e1(m2κ)(m2`) + · · · + Ane1(m2κ)(mn`), where Ai

are are constants, for all i=0,1,2,· · ·n. Therefore the general solution of (4.7) is

u(κ) =
[
A1e1(m1κ)(m1`) + A2e1(m2κ)(m2`) + · · ·+ Ane1(mnκ)(m`)

]
+

e1(tκ)(t`)

ane1((t`)− 1)n + an−1e1((t`)− 1)n−1 + · · ·+ a0

.

(4.12)

Case 2 : Suppose the roots are real and same, then the general solution of (4.7) is

u(κ) =
[
An + An−1(mκ)

(n−1)
(m`) + An−2(mκ)

(n−2)
(m`) + · · ·+ A1(mκ)(m`)

(1)
]
e1(mκ)(m`)

+
e1(tκ)(t`)

ane1((t`)− 1)n + an−1e1((t`)− 1)n−1 + · · ·+ a0

.

(4.13)

The following example illustration (4.12) and (4.13).

4.5 Example

In this section, we present example to illustrate use of extorial function.

Example 4.5.1. Consider the linear homogeneous difference equation

(
∆2
`

`2
− 4

∆`

`
+ 3

)
u(κ) = 0. (4.14)
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The auxiliary equation is m2 − 4m+ 3 = (m− 1)(m− 3) = 0.

Therefore roots are m1 = 1 and m2 = 3 and (4.14) has a solution.

From case 1, u(κ) = Ae1((κ)`) +Be1((3κ)(3`)) (4.15)

Example 4.5.2. Consider the difference equation(
∆2
`

`2
− 2

∆`

`
+ 1

)
u(κ) = 0. (4.16)

The auxilary equation is m2 − 2m + 1 = (m − 1)(m − 1) = 0. Therefore the roots

are m= (1,1) that is real and same. The complementary function is

u(κ) = (A+Bκ) e1(κ`) = (A+Bκ) e1(κ`).

The following example illustrate 4.12 and 4.13

Example 4.5.3. Consider the linear non-homogeneous difference equation

∆3
`u(κ)

`3
− 3

∆2
`u(κ)

`2
+ 3

∆`u(κ)

`
− u(κ) = e1(tκ)t`. (4.17)

The auxilary equation of (4.17) is given by

m3 − 3m2 + 3m− 1 = (m− 1)3 = 0.

So roots are m = (1, 1, 1) that is real and equal.

Therefore the general function is u(κ) =
[
A+B(κ)

(1)
` + C(κ)

(ν)
`

]
e1(κ`)

+
e1(tκ)(t`)

ane1((t`)− 1)n + an−1e1((t`)− 1)n−1 + · · ·+ a0

.

We observe that extorial functions serve as solution of linear higher order
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`-delta difference equation. Hence it is posible to arrive at several applications in

life sciences.



Chapter 5

Riemann zeta Factorial Function

The extorial function is a sum of ratio of polynomial factorial functions

with factorials. This motivates us to introduce Riemann zeta factorial function like

extorial function. The zeta factorial function is a sum of reciprocals of factorial

polynomials.

5.1 Basic Definitions

In this section, we introduce Riemann zeta factorial function and its fractional

order, which is an extension of Riemann zeta function and obtain certain results

using difference operator.

Lemma 5.1.1. 1(m) + 2(m) + 3(m) + · · ·+ κ(m) =
(κ+ 1)(m+1)

(m+ 1)!
.

78
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Proof: Let 1 + 2 + 3 + · · ·+ κ =
(κ+ 1)(2)

(2)!

κ∑
r=1

(κ− r)(2) =
κ(3)

3!
,

−1

∆ κ(2) =
κ(3)

3!

∣∣∣∣κ
0

=
κ(3)

3!
− 0(3)

3!

(κ− 1)(2) + (κ− 2)(2) + (κ− 3)(2) + · · ·+ (2)(2) + (1)(2) + (0)(2) =
κ(3)

3!

1(2) + 2(2) + · · ·+ (κ− 1)2 =
κ(3)

3!

Replacing κ by κ+ 1,

1(2) + 2(2) + · · ·+ (κ)2 =
(κ+ 1)(3)

3!

Similarly, we get

1(m) + 2(m) + 3(m) + · · ·+ κ(m) =
(κ+ 1)(m+1)

(m+ 1)!

Let u(κ) be a real valued function defined on (−∞,∞) and ` > 0. The

`-difference operator denoted as ∆` on u(κ) is defined by

∆`u(κ) = u(κ+ `)− u(κ). (5.1)

If there exits a function v(κ) such that ∆`v(κ) = u(κ), then v(κ) is said to be the

inverse difference of u(κ) and is denoted as v(κ) = ∆−1
` u(κ).

The polynomial factorial having shift value ` is defined by

κ
(n)
` = κ(κ− `)(κ− 2`) · · · (κ− (n− 1)`) and κ

(0)
` = 1. (5.2)

For −1 < ` < 1 and κ ∈ (−∞,∞), we have the extorial function

e(κ)
(1)
` =

κ
(0)
`

0!
+
κ

(1)
`

1!
+
κ

(2)
`

2!
+
κ

(3)
`

3!
+ · · · (5.3)
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Lemma 5.1.2. [49] If ` > 0, the inverse principle of ∆` is given by

∆−1
` u(κ)

∣∣∣∞
κ

=
∞∑
r=0

u(κ+ r`). (5.4)

If we assume that
−1

∆
`
u(∞) =

−1

∆
`
u(κ)

∣∣
κ=∞ = c, then

∆−1
` u(κ)

∣∣∞
κ

=
−1

∆
`
u(∞)−

−1

∆
`
u(κ)

= c−
(
−
∞∑
r=0

u(κ+ r`)

)
− c =

∞∑
r=0

u(κ+ r`).

Definition 5.1.3. For ` > 0, s ∈ N(2) and (κ+ t`)`
(s) 6= 0, the Riemann zeta

factorial function is defined by

ζ`(κ, s) =
∞∑
t=0

1

(κ+ t`)`
(s)
. (5.5)

Theorem 5.1.4. Let s ≥ 2, ` ≥ 0 and (κ− 1)
(s−1)
` 6= 0. Then, we have

ζ`(κ, s) =
1

((s− 1)`(κ− `))`(s−1)
=
∞∑
t=0

1

(κ+ t`)`
(s)
.

Proof. The infinite series form of ∆−1
` u(κ) is given by

∆−1
` u(κ) = −

∞∑
r=0

u(κ+ r`) + c (5.6)

and ∆−1
`

1

κ
(s)
`

=
1

(s− 1)
(s−1)
`

+c, where c is a constant.
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5.2 Higher Order Riemann Zeta Factorial Func-

tions

In this section, we define the higher order and fractional order zeta factorial

function and derive several identities related to infinite series.

Definition 5.2.1. For ν > 0, the fractional order Riemann zeta factorial function

is defined as

ζν` (κ, s) = ∆
−(ν−1)
` ζ`(κ, s). (5.7)

Theorem 5.2.2. Let ν = 2, s ≥ 3, ` > 0 and (κ − 2`)s−2
` 6= 0. Then we have the

second order Riemann zeta factorial function as

ζ2(κ, s) =
∞∑
t=0

(t+ 1)
(1)
1

(κ+ t`)
(s)
`

=
∞∑
r=0

∞∑
t=0

1

(κ+ (r + t)`)
(s)
`

=
1

`2(s− 1)
(2)
1 (κ− 2`)

(s−2)
`

(5.8)

In general, mth order Riemann zeta factorial function is expressed as

ζm` (κ, s) =
∞∑
t=0

(t+ (m− 1))
(m−1)
1

(m− 1)!(κ+ t`)
(s)
`

=
1

`m(s− 1)
(m)
1 (κ−m`)(s−m)

`

. (5.9)

Example 5.2.3. when m = 3, s = 5, κ = 7, ` = 1, equation (5.9) becomes

ζ3
1 (7, 5) =

∞∑
t=0

(t+ 1)
(2)
1

(2)!(7 + (t))
(5)
1

=
1

(4)
(3)
1 (4)

(2)
1

.

Remark: Here, we give first three order zeta factorial functions
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ζ1
` (κ, s) =

∞∑
t=1

(t− 1)
(0)
1

0!(κ+ (t− 1)`)
(s)
`

=
∞∑
t=1

1

(κ+ (t− 1)`)
(s)
`

ζ2
` (κ, s) =

∞∑
t=1

t
(1)
1

1!(κ+ (t− 1)`)
(s)
`

=
∞∑
t=1

t11

(κ+ (t− 1)`)
(s)
`

ζ3
` (κ, s) =

∞∑
t=1

(t+ 1)
(2)
1

1.2(κ+ (t− 1)`)
(s)
`

In general,

we can get (5.9), since
∞∑
t=0

1

(K + t`)
(s)
`

=
∞∑
t=1

1

(κ+ (t− 1)`)
(s)
`

The following corollary gives relation between Riemann Zeta Factorial and Summa-

tion.

Corollary 5.2.4. If (κ− 2`)
(s−2)
` 6= 0 and s ≥ 2 + 1, then we have

ζ3
` (κ, s)− ζ3

` (κ+ 5`, s)− 5ζ2
` (κ+ 2`, s) + 5

3∑
t=1

t

(κ+ (t+ 1)`)
(s)
`

=
5−1∑
t=0

(t+ 2)
(2)
1

2!(κ+ t`)
(s)
`

,

ζ3
` (κ, s)− ζ3

` (κ+ 7`, s)− 7ζ2
` (κ+ 3`, s) + 7

4∑
t=1

t

(κ+ (t+ 2)`)
(s)
`

=
7−1∑
t=0

(t+ 2)
(2)
1

2!(κ+ t`)
(s)
`

.

and in general,

ζ3
` (κ, s)− ζ3

` (κ+ (2m+ 1)`, s)− (2m+ 1)ζ2
` (κ+m`, s)

+ (2m + 1)
m+1∑
t=1

t

(κ+ (t+ (m− 1))`)
(s)
`

=
2m∑
t=0

(t+ 2)
(2)
1

2!(κ+ t`)
(s)
`

.

ζ3
` (x, s)− ζ`(κ+ (2m+ 1)`, s)− (2m+ 1)ζ

(2)
` (κ+ (2m− 1), s)

=
2m∑
t=0

(t+ 2)
(2)
`

2!(κ+ t`)
(s)
`

− (2m+ 1)(t+ 1)
(1)
`

(κ+ t`)
(s)
`

.

Proof: The proof follows from (5.9).
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5.3 Finite Summation Formula

Theorem 5.3.1. Assume that u(κ) be a real valued function satisfying the condition

∆−1
` u(κ),∆−2

` u(κ),∆−3
` u(κ), · · · ,∆−n` u(κ) at κ =∞ in Z. Then,

∆−n` u(κ)
∣∣κ
κ+m`

=
m−1∑
r=0

(r + (n− 1))
(n−1)
1

(n− 1)!
u(κ+ r`)+

n−1∑
t=1

(m+ (n− 1− t))(n−t)
1

(n− t)!
∆−t` u(κ+m`)

(5.10)

Proof. From (5.6), we obtain

∆−1
` u(κ)

∣∣∞
κ

= u(κ)+u(κ+`)+u(κ+2`)+· · ·+u(κ+m`)+u(κ+(m+1)`)+· · · (5.11)

∆−1
` u(κ)

∣∣∞
κ+m`

= u(κ+m`) + u(κ+ (m+ 1)`) + (m+ 2)`) + · · · (5.12)

From (5.11) and (5.12), we get

∆−1
` u(κ)

∣∣κ+m`

κ
=

m−1∑
r=0

u(κ+ r`) (5.13)

From (5.11), we arrive

∆−1
`

(
∆−1
` u(κ)

)∣∣∞
κ

=
−1

∆
`
u(κ) +

−1

∆
`
u(κ+ `) +

−1

∆
`
u(κ+ 2`) + · · ·

= u(κ) + u(κ+ `) + u(κ+ 2`) + · · ·

+u(κ+ `) + u(κ+ 2`) + · · ·

+u(κ+ 2`) + u(κ+ 3`) + · · ·

∆−2
` u(κ)

∣∣∞
κ

= u(κ)+2u(κ+`)+3u(κ+2`)+· · ·+mu(κ+(m−1)`)+(m+1)u(κ+m`)+· · ·

(5.14)
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Replacing κ by κ+m` in the limit of (5.14), we get

∆−2
` u(κ)

∣∣∞
κ+m`

= u(κ+m`) + 2u(κ+ (m+ 1)`) + 3u(κ+ (m+ 2)`) + · · · (5.15)

(5.14) - (5.15) gives

∆−2
` u(κ)

∣∣κ
κ+m`

=
m−1∑
r=0

(r + 1)
(1)
1

1!
u(κ+ r`) +

m
(1)
1

1!

−1

∆
`
u(κ)

∣∣∣∣∣
∞

κ+m`

∆−1
`

(
∆−2
` u(κ)

)∣∣∞
κ

= ∆−1
` u(κ) + 2

−1

∆
`
u(κ+ `) + 3

−1

∆
`
u(κ+ 2`) + · · ·

= u(κ) + u(κ+ `) + u(κ+ 2`) + · · ·

+2u(κ+ `) + 2u(κ+ 2`) + 2u(κ+ 3`) + · · ·

+3u(κ+ 3`) + 3u(κ+ 3`) + 3u(κ+ 3`) + · · ·

∆−3
` u(κ)

∣∣∞
κ

= u(κ)+(1+2)u(κ+`)+(1+2+3)u(κ+2`)+(1+2+3+4)u(κ+3`)+· · ·

+(1 + 2 + · · ·+ (m+ 1))u(κ+m`)

Replacing κ by κ+m` in the limits

∆−3
` u(κ)

∣∣∞
κ+m`

= u(κ+m`)+(1+2)u(κ+(m+1)`)+(1+2+3)u(κ+(m+2)`)+ · · ·

(5.16)

∆−3
` u(κ)

∣∣∞
κ

= u(κ)+(1+2)u(κ+`)+(1+2+3)u(κ+2`)+(1+2+3+4)u(κ+3`)+· · ·

+(1 + 2 + · · ·+m)u(κ+ (m− 1)`) + (1 + 2 + · · ·+ (m+ 1))u(κ+m`)

+(1 + 2 + · · ·+ (m+ 2))u(κ+ (m+ 1)`) + · · ·

Applying the formula 1 + 2 + · · ·+m = (m+ 1)
(2)
2

∆−3
` u(κ)

∣∣∞
κ

= u(κ) +
3

(2)
1

2!
u(κ+ `) +

4
(2)
1

2!
u(κ+ 2`) + · · ·+ (m+ 1)

(2)
1

2!
u(κ+ (m− 1)`)
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+(1 + 2 + · · ·+ (m+ 1))u(κ+m`) + (1 + 2 + · · ·+ (m+ 2))u(κ+ (m+ 1)`)

+ (1 + 2 + · · ·+ (m+ 3))u(κ+ (m+ 2)`) + · · · (5.17)

Substracte (5.16) from (5.17)

∆−3
` u(κ)

∣∣∞
κ
− ∆−3

` u(κ)
∣∣∞
κ+m`

= u(κ) +
3

(2)
1

2!
u(κ+ `) +

4
(2)
1

2!
u(κ+ 2`) + · · ·+

+
(m+ 1)

(2)
1

2!
u(κ+ (m− 1)`)

+(1 + 2 + · · ·+m)u(κ+m`) +mu(κ+m`)

+(1 + 2 + · · ·+ (m+ 2))u(κ+ (m+ 1)`)

+2mu(κ+ (m+ 1) `) + (1 + 2 + · · ·+ (m+ 2) `)u(κ+ (m+ 2)`)

∆−3
` u(κ)

∣∣κ
κ+m`

=
m−1∑
r=0

(r + 2)

2!
u(κ+ r`)+

(m+ 1)
(2)
1

2!

−1

∆
`
u(κ)

∣∣∣∣∣
∞

κ+m`

+
m

(1)
1

1!
∆−2
` u(κ)

∣∣∣∣∣
∞

κ+m`

By induction on n we get the proof of (5.10).

The following example illustrates the Thorem 5.3.1

Example 5.3.2. Taking n = 4 in (5.10) we arrive at

∆−4
` u(κ)

∣∣κ+m`

κ
=

m−1∑
r=0

(r+3)
(3)
1

3!
u(κ+ r`) +

3∑
t=1

(m+3−t)(4−t)1

(3−t) ∆−t` u(κ+m`).

Now taking u(κ) =
1

κ
(s)
`

and using (5.9), we find

ζ4
` (κ, s)− ζ4

` (κ+m`, s) =
m−1∑
r=0

(r+3)
(3)
1

3!
1

(κ+r`)s`

+
(m+ 2)

(3)
1

3!
ζ1
` (κ+m`, s) +

(m+ 1)
(2)
1

2!
ζ2
` (κ+m`, s) +

m
(1)
1

1!
ζ3
` (κ+m`, s) (5.18)
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when ` = 1, s=5, κ = 5, m=3, ζ4
` (κ, s) =

1

`4(s− 1)4
1(κ− 4`)

(s−4)
`

and ζ4
` (κ+m`, s) =

1

`4(s− 1)4
1(κ− `)(s−4)

`

First we find LHS of (5.18).

LHS =
1

(4)(4)
1 (1)(1)

1

− 1

(4)(4)
1 (4)(1)

1

=
1

4 · 3 · 2 · 1
− 1

4 · 3 · 2 · 1 · 4
=

1

24

[
1− 1

4

]
=

1

24

[
3

4

]
=

1

32

RHS =
2∑
r=0

(r + 3)
(3)
1

3!

1

(5 + r)
(5)
1

+
5

(3)
1

3!

1

1 · (4)(1)
1 (7)(4)

1

+
4

(2)
1

2!

1

(4)(2)
1 (6)(3)

1

+
3

(2)
1

2!

1

(4)(3)
1 (5)(2)

1

=
3

(3)
1

3!

1

(5)(5)
1

+
4

(3)
1

3!

1

(6)(5)
1

+
5

(3)
1

3!

1

(7)(5)
1

+
5

(3)
1

3!

1

1 · (4)(1)
1 (7)(4)

1

+
4

(2)
1

2!

1

(4)(2)
1 (6)(3)

1

+
3

(2)
1

2!

1

(4)(3)
1 (5)(2)

1

=
1

120
+

1

180
+

1

252
+

1

336
+

1

240
+

1

160
=

1

32

Similarly if we take n=5, we have

∆−5
` u(κ)

∣∣κ
κ+m`

=
m−1∑
r=0

(r + 4)
(3)
1

4!
u(κ+ r`) +

4∑
t=1

(m+ 4− t)(5−t)
1

(5− t)
∆−t` u(κ+m`).

ζ5
` (κ, s)− ζ5

` (κ+m`, s) =
m−1∑
r=0

(r + 4)
(3)
1

4!

1

(κ+ r`)s`
+

(m+ 3)
(4)
1

3!
ζ1
` (κ+m`, s)

+
(m+ 2)(2)

1

3!
ζ2
` (κ+m`, s)+

(m+ 1)(2)
1

2!
ζ3
` (κ+m`, s)+

(m)(1)
1

1!
ζ4
` (κ+m`, s) (5.19)

For verification we take ` = 1, s = 6, κ = 6, m = 2 in (5.19)
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Now, LHS is

ζ5
` (κ, s)− ζ5

` (κ+m`, s) =
1

(5)(5)
1 (1)(1)

1

− 1

(5)(5)
1 (3)(1)

1

=
1

(5)(5)
1

[
1− 1

3

]
=

1

5 · 4 · 3 · 2 · 1

[
2

3

]
=

1

180

RHS =
1∑
r=0

(r + 4)
(4)
1

4!

1

(6 + r)
(6)
1

+
5

(4)
1

4!

1

(5)(1)
1 (7)(5)

1

+
4

(3)
1

3!

1

(5)(2)
1 (6)(4)

1

+
3

(2)
1

2!

1

(5)(3)
1 (5)(3)

1

+
2

(2)
1

1!

1

(5)(3)
1 (4)(2)

1

=
4

(4)
1

4!

1

(6)(6)
1

+
5

(4)
1

4!

1

(7)(6)
1

+
5

(4)
1

4!

1

(5)(1)
1 (7)(5)

1

+
4

(3)
1

3!

1

(5)(2)
1 (6)(4)

1

+
3

(2)
1

2!

1

(5)(3)
1 (5)(3)

1

+
2

(2)
1

1!

1

(5)(3)
1 (4)(2)

1

=
1

720
+

1

1008
+

1

2520
+

1

1800
+

1

1200
+

1

720
=

1

180

Thus we have verified the Theorem (5.3.1).

5.4 Infinite Summation Formula

Theorem 5.4.1. (Infinite Summation Formula) Let u be a real valued function

ddefined on R and n be a positive integer.

If ∆−1
` u(κ)

∣∣
κ=∞ , ∆−2

` u(κ)
∣∣
κ=∞ , · · · , ∆−1

` u(κ)
∣∣
κ=∞, then

−n
∆
`
u(κ)

∣∣∣∣∞
κ

=
∞∑
t=0

(r + (n− 1))
(n−1)
1

(n− 1)!
u(κ+ t`) (5.20)
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Proof. From (5.6), we obtain

∆−1
` u(κ)

∣∣∞
κ

=u(κ) + u(κ+ `) + u(κ+ 2`) + u(κ+ 3`) + · · ·

∆−1
`

(
∆−1
` u(κ)

)∣∣∞
κ

=
−1

∆
`
u(κ) +

−1

∆
`
u(κ+ `) +

−1

∆
`
u(κ+ 2`) + · · ·

=u(κ) + u(κ+ `) + u(κ+ 2`) + · · ·+ u(κ+ `) + u(κ+ 2`) + u(κ+ 3`) + · · ·

+ u(κ+ 2`) + u(κ+ 3`) + · · ·+ u(κ+ 3`) + u(κ+ 4`) + · · ·

∆−2
` u(κ)

∣∣∞
κ

= u(κ) + 2u(κ+ `) + 3u(κ+ 2`) + · · ·

∆−1
`

(
∆−1
` u(κ)

)∣∣∞
κ

=u
−1

∆
`

(κ) + 2
−1

∆
`
u(κ+ `) + 3

−1

∆
`
u(κ+ 2`) + · · ·

=u(κ) + u(κ+ `) + u(κ+ 2`) + · · ·+ 2u(κ+ `) + 2u(κ+ 2`) + 2u(κ+ 3`) + · · ·

+ 3u(κ+ 2`) + 3u(κ+ 3`) + · · ·+ 4u(κ+ 3`) + 4u(κ+ 4`) + · · ·

= u(κ) + (1 + 2)u(κ+ `) + (1 + 2 + 3)u(κ+ 2`) + · · ·

∆−3
` u(κ)

∣∣∞
κ

= u(κ) +
(3)

(2)
1

2!
u(κ+ `) +

(4)
(2)
1

2!
u(κ+ 2`) +

(5)
(2)
1

2!
u(κ+ 3`) + · · ·

By induction on n we get the proof of (5.20).

Corollary 5.4.2. For ν > 0, the γth order inverse of u

∆−ν` u(κ)
∣∣∞
κ

=
∞∑
t=0

(t+(ν−1))
(ν−1)
1

|γ u(κ+ t`) =
∞∑
t=0

|t+ν
|ν |t+1

u(κ+ t`).

Proof. The proof follows by replacing n by ν in theorem 5.4.1 and κ
(n)
` =

|κ+1

|κ+1 −n
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Example 5.4.3. The zeta factorial function for fractional order obtained as

ζ
(ν)
1 (κ, s) =

∞∑
t=0

(t+ (ν − 1))(ν−1)
1

|ν (κ+ t)(s)
=

1

(s− 1)(ν)(κ− ν)
(s−ν)
`

ζ
(ν)
1 (κ, s) =

∞∑
t=0

∣∣t+ ν

|ν
∣∣t+ 1

·
∣∣κ+ t+ 1− s∣∣κ+ t+ 1

=
|s− ν
|s

∣∣∣κ− ν + 1− (s− ν)∣∣κ− ν + 1

ζ
(ν)
1 (κ, s) =

∞∑
t=0

∣∣t+ ν

|ν
∣∣t+ 1

·
∣∣κ+ t+ 1− s∣∣κ+ t+ 1

=
|s− ν
|s

∣∣κ− s+ 1∣∣κ− ν + 1

If we take ν = 0.1 s = 0.5, κ = 3, then we find

ζ
(0.1)
1 (3, 0.5) =

∞∑
t=0

∣∣t+ 0.1∣∣0.1 ∣∣t+ 1
·
∣∣4 + t− 0.5∣∣4 + t

=

∣∣0.4∣∣0.5
∣∣0.5∣∣3.9

and hence

|0.1
|0.1 |1

|3.5
|4 +

|1.1
|0.1 |2

|4.5
|5 +

|2.1
|0.1 |3

|5.5
|4 + · · · = |0.4|0.5

|0.5
|3.9

It is also possible to arrrive

∆−ν` e−sκ
∣∣∞
κ

= 1

(1−e−s`)
ν e−sκ

and from Corollary 5.4.2 we can obtain

1

(1−e−s`)
ν e−sκ

∣∣∣∣∞
κ

=
∞∑
t=0

|t+ν
|ν (κ+t)s

e−s(κ+t`).

Similarly one can obtain several results on zeta factorial functions.

The above are all extorial family functions arrived from factorial function and

exponential function.



Chapter 6

Extra, Partial Exponential and

Extorial Functions

In [1], the theory of difference equations is developed with the definition of

the difference operator ∆u(κ) = u(κ + 1) − u(κ), κ ∈ N,N(0) = {0, 1, 2, · · · }.

Similarly one can define ∆`u(κ) = u(κ+ `)−u(κ), Where 0 6= ` ∈ R and u : R→ R

is real valued function. In [27], the authors used the generalized difference operator

∆` and established basic properties of ∆` such as product and quotient rules of ∆`.

90
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6.1 Basic Definitions

The second, third kind and nth kinds of the generalized difference operators

are denoted by ∆`,m,∆`1,`2,`3 and ∆`1,`2,`3··· ,`n respectively and defined on u(κ) as

∆`,mu(κ) = ∆` (∆mu(κ)), ∆`1,`2,`3u(κ) = ∆`1 (∆`2 (∆`3u(κ)))

and in general ∆`1,`2,`3,··· ,`nu(κ) = ∆`1 (∆`2 · · · (∆`nu(κ)))

By these operator, we obtain the generalized version of Leibniz theorem,

Binomial theorem. The theory of difference operator ∆` developed in [29] agrees

when ` = 1. In the continuous case, we have the integration by parts , Bernoulli’s

formula and several results in calculus. Motivated by the above situation, we define

extra exponential functions, sub exponential functions and extorial functions to

obtain solution of certain type differential and difference equations.

6.2 Partial Exponential Function in Differential

Equation

In this section, we define sub exponential function, denoted as en(x), extra

exponential function and find solutions of higher order differential equations.

Definition 6.2.1. For each positive integer n and for x ∈ (−∞,∞), the partial
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exponential function denoted as en(x) is defined as

en(x) = 1 +
xn

n!
+

x2n

(2n)!
+

x3n

(3n)!
+ · · ·+∞ =

∞∑
r=0

xrn

(rn)!
(6.1)

when n ≤ 2, (6.1) becomes partial exponential function.

Theorem 6.2.2. The partial exponential function en(x) is a solution of the (n−1)th

order linear nonhomogeneous differential equation

dn−1

dxn−1
u(x) +

dn−2

dxn−2
u(x) + · · ·+ d

dx
u(x) + u(x) = ex

Proof: From the equation (6.1), we have

en(x) = 1 +
xn

n!
+

x2n

(2n)!
+

x3n

(3n)!
+ · · ·+∞.

Differentiating with respect to x, we get

d

dx
en(x) =

xn−1

(n− 1)!
+

x2n−1

(2n− 1)!
+

x3n−1

(3n− 1)!
+ · · ·+∞,

d2

dx2
en(x) =

xn−2

(n− 2)!
+

x2n−2

(2n− 2)!
+

x3n−2

(3n− 2)!
· · ·+∞,

and in general, we find

dr

dxr
en(x) =

xn−r

(n− r)!
+

x2n−r

(2n− r)!
+

x3n−r

(3n− r)!
· · ·+∞

Adding above equation for r = 0, 1, 2, 3, · · · , n− 1, we get

n−1∑
r=0

dr

dxr
en(x) = ex , which yields the proof by taking u(x) = en(x).

The definition (6.2.1) can be extended to ν > 0.
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Definition 6.2.3. Let ν > 0 be a any real number and x ∈ R. Then, the extra

exponential function denoted as eν(x) is defined as

eν(x) = 1 +
xν

Γ(ν + 1)
+

x2ν

Γ(2ν + 1)
+ · · ·+∞ =

∞∑
r=0

xrν

Γ(rν + 1)
(6.2)

when ν takes the value 0 < ν < 1, ν = 1 (6.2) becomes extra exponential, exponential

and partial exponential functions respectively.

Remark 6.2.4. Taking κ = 0 in (5.4) and then taking ` = 1

∆−1
−`u(κ)

∣∣∣
t=0

=
∞∑
r=0

u(r`), ∆−1
−1u(κ)

∣∣∣
t=0

=
∞∑
r=0

u(r). (6.3)

Definition 6.2.5. [42] Let ` > 0, ν ∈ (−∞,∞) and Γ(κ
`
+1) be the gamma function.

Then, the ` - factorial polynomial in κ for real index ν is defined by

κ
(ν)
` = `ν

Γ(κ/`+ 1)

Γ(κ/`+ 1− ν)
, κ/`+1, (κ/`+1−ν) 6∈ −N(0) = {0,−1,−2, · · · }. (6.4)

Special Cases: We give some special case by taking ` = ±1.

(i) when ` = −1, κ
(n)
−1 = κ(κ+ 1)(κ+ 2) · · · (κ+ n− 1) =

n∏
r=1

(κ+ r − 1), n ∈ Z+.

(ii) when ` = 1, κ
(n)
1 = κ(κ−1)(κ−2) · · · (κ−n+1) =

n∏
r=1

(κ−r+1) = κ(n), n ∈ Z+.

Theorem 6.2.6. The relation between extra exponential and exponential for ν = 0.5

is given by

e0.5(x) =
x0.5

0.5Γ0.5

[
∆−1
−2

(2x)κ

3
(κ)
−2

|κ=0

]
+ ex. (6.5)
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Proof: From the definition of extra exponential function for ν = 0.5, we have

e0.5(x) = 1 +
x0.5

Γ1.5
+
x1

Γ2
+
x1.5

Γ2.5
+
x2

Γ2
+
x2.5

Γ2.5
+ · · · , x > 0

= 1 +
x

1!
+
x2

2!
+ · · ·+∞+

x0.5

0.5Γ0.5
+

x1.5

(1.5)(0.5)Γ0.5
+

x2.5

(2.5)(1.5)(0.5)Γ0.5
+∞

=
x0.5

0.5Γ0.5

[
1 +

x

(1.5)(1)
+

x2

(2.5)(2)
+

x3

(3.5)(3)
+ · · ·

]
+ ex

=
x0.5

0.5Γ0.5

[
1 +

x
3
2

+
x2

3
2

5
2

+
x3

3
2

5
2

7
2

+ · · ·
]

+ ex

=
x0.5

0.5Γ0.5

[
1 +

2x

3.1
+

(2x)2

3.5
+

(3x)3

3.5.7
+ · · ·

]
+ ex

=
x0.5

0.5Γ0.5

[
1 +

2x

3
(1)
−2

+
(2x)2

3
(2)
−2

+
(3x)3

3
(3)
−2

+ · · ·

]
+ ex.

By applying ∆−1
−`u(κ) = u(κ) + u(κ+ `) + u(κ+ 2`) + · · · for ` = 1, we get

∆−1
−1u(κ) = u(κ) + u(κ+ 1) + u(κ+ 2) + · · · (6.6)

Now, the proof follows by taking u(κ) =
xκ

1
(κ)
−1

in (6.6) and then putting κ = 0.

Corollary 6.2.7. For x > 0, the difference of extra exponential and exponential for

ν = 0.5 is given by

Γ1.5

x0.5
[e0.5(x)− e1(x)] =

−1

∆
−1

(2x)κ

3
(κ)
−2

|κ=0 (6.7)

Proof: The proof follows from (6.5).

Corollary 6.2.8. By taking x=1, we have Γ1.5 (e0.5(1)− e) = ∆
−1
−2

(2x)κ

3
(κ)
−2

|κ=0.

Theorem 6.2.9. If m ∈ N, we have

e1(x)− em(x) =
m−1∑
r=1

∆−1
−m

xκ+r

(κ+ r)!
|κ=0 . (6.8)
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Proof: From the definition of exponential function, we have

e1(x) = 1 +
x

1!
+
x2

2!
+
x3

3!
+
x4

4!
+ · · ·+∞

Rearranging the terms into four groups, we get

e1(x) = 1 +
x4

4!
+
x8

8!
+
x12

12!
+ · · ·+∞+

x

1!
+
x5

5!
+
x9

9!
+ · · ·+∞

+
x2

2!
+
x6

6!
+
x10

10!
+ · · ·+∞+

x3

3!
+
x7

7!
+
x11

11!
+ · · ·+∞

which is same as

e1(x) = e4(x) + x
1!

[
1 +

x4

2.3.4.5
+

x8

2.3.4. · · · 9

]
+ x2

2!

[
1 +

x4

3.4.5.6
+

x8

3.4.5 · · · 10

]
+ x3

3!

[
1 +

x4

4.5.6.7
+

x8

4.5.6.7.8.9.10 + · · ·

]
By applying the formula for ∆−1

−`
, we get

e1(x) = e4(x) + x
1!

∆−1
−4

xκ

2
(κ)
−1

|κ=0 +x2

2!
∆−1
−4

xκ

3
(κ)
−1

|κ=0 +x3

3!
∆−1
−4

xκ

4
(κ)
−1

|κ=0

and which is same as

e1(x)− e4(x) =
3∑
r=1

xr

r!
∆−1
−4

xκ

(r + 1)
(κ)
−1

|κ=0=
3∑
r=1

∆−1
−4

xκ+r

(r + κ)!
|κ=0

Continuing this process, we get (6.8) by replacing 4 by m ∈ N.

Theorem 6.2.10. If νm = 1,m ∈ N , then we have

eν(x)− e1(x) =
m−1∑
r=1

x(0.25)r

Γ(1 + r(0.25))
∆−1
−1

xκ

(1 + νr)κ−1

|κ=0 . (6.9)

Proof: From the definition of extra exponential function, by putting ν = 0.25,

e0.25(x) = 1 +
x0.25

Γ0.25 + 1
+

x0.5

Γ0.5 + 1
+

x0.75

Γ0.75 + 1
+

x1

Γ1 + 1
+ · · ·+∞

By rearranging the terms, we find

e0.25(x) =
x0.25

Γ1.25
+

x1.25

Γ2.25
+

x2.25

Γ3.25
+ · · ·+∞+

x0.5

Γ1.5
+
x1.5

Γ2.5
+
x2.5

Γ3.5
+ · · ·+∞
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+
x0.75

Γ1.75
+

x1.75

Γ2.75
+

x2.75

Γ3.75
+ · · ·+∞+

x0

Γ1
+
x1

Γ2
+
x2

Γ3
+ · · ·+∞

=
x0.25

Γ1.25

[
1 +

x

(1.25)
+

x2

(1.25)(2.25)
+ · · ·

]
+
x0.5

Γ1.5

[
1 +

x

(1.5)
+

x2

(1.5)(2.5)
+ · · ·

]
+

x0.75

Γ1.75

[
1 +

x

(1.75)
+

x2

(1.75)(2.75)
+ · · ·

]
+
x0

Γ1

[
1 +

x

(1)
+

x2

(1)(2)
+

x3

(1)(2)(3)
+ · · ·

]
By applying ∆−1

−1
u(κ) on each group, we get

e0.25(x) =
x0.25

Γ1.25
∆−1
−1

xκ

(1.25)
(κ)
−1

|κ=0 +
x0.5

Γ1.5
∆−1
−1

xκ

(1.5)
(κ)
−1

|κ=0 +
x0.75

Γ1.75
∆−1
−1

xκ

(1.75)
(κ)
−1

|κ=0

+
x0

Γ1
∆−1
−1

xκ

(1)
(κ)
−1

|κ=0

which can be arranged as

e0.25 − e1(x) =
3∑
r=1

x(0.25)r

Γ1 + r(0.25)
∆−1
−1

xκ

(1 + 0.25r)
(κ)
−1

|κ=0.

In general, it is easy to obtain (6.9), if νm = 1 by applying the above method.

Corollary 6.2.11. The relation between e0.35(x2) and e1(x2) is given by

e0.5(x2) = e1(x2) +
x

Γ1.5
∆−1
−2

xκ

(1.5)
(κ)
−1

|κ=0 . (6.10)

Proof: Now, the proof follows by applying the formula ∆−1

−2
u(κ), in the following

derivations:

e1(x2) = 1 + x2

1!
+ (x2)2

2!
+ (x2)3

3!
+ · · ·

e0.5(x2) = 1 +
(x2)0.5

Γ1.5
+

(x2)1

Γ2
+

(x2)1.5

Γ2.5
+

(x2)2

Γ3
+ · · ·

= 1 +
x

Γ1.5
+
x2

Γ2
+

x3

Γ2.5
+
x4

Γ3
+ · · ·

= 1 +
x2

1!
+

(x2)2

2!
+

(x2)3

3!
+ · · ·+ x

Γ1.5
+

x3

Γ2.5
+

x5

Γ3.5
+ · · ·

= e1(x2) +
x

0.5Γ0.5
+

x3

(1.5)(0.5)Γ0.5
+ · · ·
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= e1(x2) +
x

Γ1.5
+

x3

(1.5)Γ(1.5)
+

x5

(1.5)(2.5)Γ(1.5)
+ · · ·

= e1(x2) + x
Γ1.5

[
1 +

x2

1.5
+

x4

(1.5)(2.5)
+

x6

(1.5)(2.5)(3.5)
+ · · ·

]
e0.5(x2) = e1(x2) +

x

Γ1.5
∆−1
−2

xκ

(1.5)
(κ)
−1

|κ=0.

Lemma 6.2.12. The relation between e1(ix) and e2(ix) is

e1(ix)− e2(ix) + i sinx = 0. (6.11)

Proof: e2(ix) = 1 +
(ix)2

2!
+

(ix)4

4!
+

(ix)6

6!
+ · · ·

is same as

e2(ix) = 1− x2

2!
+
x4

4!
− x6

6!
+ · · · = cosx (6.12)

e1(ix) = 1 + ix
1!

+ (ix)2

2!
+ (ix)3

3!
+ (ix)4

4!
+ · · ·

can be expressed as e1(ix) = e2(ix) + i
[
x
1!
− x3

3!
+ x5

5!
+ · · ·

]
Thus,

e1(ix)− e2(ix) = i

[
x

1!
− x3

3!
+
x5

5!
+ · · ·

]
= −i sinx (6.13)

which completes the proof.

Corollary 6.2.13. The identity relating e3(ix) and e6(ix) is given by

−3

x3

[
d3

dx3
e3(ix) + ie6(ix)

]
= ∆−1

−6

xκ(−1)
κ
2

4
(κ)
−1

|κ=0 . (6.14)

Proof: e3(ix) = 1 +
(ix)3

3!
+

(ix)6

6!
+

(ix)9

9!
+ · · ·

= 1− ix3

3!
− x6

6!
+ i

x9

9!
+
x12

12
+ · · ·

= 1− x6

6!
+
x12

12!
− x18

18!
+
x24

24!
+ · · · − i

[
x3

3!
− x9

9!
+
x15

15!
− x21

21!
− · · ·

]
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d

dx
e3(ix) =

[
0− x5

5!
+
x11

11!
− x17

17!
+ · · ·

]
− i
[
x2

2!
− x8

8!
+
x14

14!
+ · · ·

]
d2

dx2
e3(ix) =

[
−x

4

4!
− x10

10!
+
x16

16!
+ · · ·

]
− i
[
x1

1!
− x7

7!
+
x13

13!
+ · · ·

]
d3

dx3
e3(ix) = −

[
−x

3

3!
− x9

9!
+
x15

15!
+ · · ·

]
− i
[
1− x6

6!
+
x12

12!
+ · · ·

]
= −ie6(ix)− x3

3!

[
1− x6

4.5.6.7.8.9
+

x15

4.5.6.7.8 · · ·
+ · · ·

]
= −ie6(ix)− x3

3!
∆−1
−6

xκ(−1)
κ
2

4
(κ)
−1

|κ=0,

which yields

−3

x3

[
d3

dx3
e3(ix) + ie6(ix)

]
= ∆−1

−6

xκ(−1)
κ
2

4
(κ)
−1

|κ=0,

and the proof is complete.

Theorem 6.2.14. Let s1(x) =
x

1!
+
x3

3!
+
x5

5!
+ · · · and c1(x) = 1 +

x2

2!
+
x4

4!
+ · · · .

Then e1(x) = c1(x) + s1(x) and
d

dx
c1(x) = s1(x),

d2

dx2
c1(x) =

d

dx
c1(x) = e1(x).

Proof: From the definition of differentiation, we arrive at

d

dx
c1(x) = lim

h→0
[c1(x+ h)− c1(x)] /h

= lim
h→0

{
1 +

(x+ h)2

2!
+

(x+ h)4

4!
+

(x+ h)6

6!
+ · · · −

[
1 +

x2

2!
+
x4

4!
+
x6

6!
+ · · ·

]}
/h

= lim
h→0

[
2xh

2!
+
h2

2!
+

4x3h

4!
+

6x5h

6!

]
/h,

which yields

d

dx
c1(x) =

x

1!
+
x3

3!
+
x5

5!
+ · · · and

d2

dx2
c1(x) = 1 +

x2

2!
+
x4

4!
+ · · · ,

and the proof is complete .
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Theorem 6.2.15. e2(x) is a solution of the differential equation
dy

dx
+
d2y

dx2
= e(x).

Proof: e2(x) = 1 +
x2

2!
+
x4

4!
+
x6

6!
+ · · ·

d

dx
e2(x) =

x1

1!
+
x3

3!
+
x5

5!
+ · · · = s1(x) (6.15)

d2

dx2
e2(x) = 1 +

x2

2!
+
x4

4!
+
x6

6!
+ · · · = c1(x) (6.16)

Now, the proof follows from (6.15) and (6.16).

6.3 Extorial Function in Difference Equation

In this section, we define Extorial function and find the inverse of generalized

delta difference on it. Also we arrive at solutions of certain type of higher order

difference equation

Definition 6.3.1. [23] For −1 < ` < 1, ` 6= 0 and κ, ν ∈ R, the `-extorial function,

denoted as eν(κ`), is defined as

eν(κ`) = 1 +
κ

(ν)
`

Γ(1ν + 1)
+

κ
(2ν)
`

Γ(2ν + 1)
+

κ
(3ν)
`

Γ(3ν + 1)
+ · · ·+∞. (6.17)

If ` ∈ (−∞,∞), ` 6= 0 and κ is a multiple of ` and ν ∈ N , then (6.17) is defined,

and which case all except finite terms of eν(κ`) are zero.

Theorem 6.3.2. If 1− (1 + `)−1 > 0, κ ∈ N, then we have

∆−ν` e1((`1κ)
(1)
`1

) =
[
1− (1 + `1)−1

]−ν
e1(`1κ)

(1)
`1
. (6.18)
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Proof: Using Binomial theorem, we have e1((`κ)
(1)
` ) = (1 + `)κ.

Taking ∆` on both sides, we get

∆`1e1((`κ)
(1)
` ) = (1 + `)κ − (1 + `)κ−1 = (1 + `)κ(1− (1 + `)−1).

which yields ∆−1
` (e1(`κ)

(1)
` ) = [1− (1 + `)−1]

−1
e1(`κ)

(1)
`

Again taking ∆−1
` on both sides, we get

∆−2
` (e1(`κ)

(1)
` ) = [1− (1 + `)−1]

−2
e1(`κ)

(1)
` ,

∆−3
` (e1(`κ)

(1)
` ) = [1− (1 + `)−1]

−3
e1(`κ)

(1)
`

The equation (6.18) follows by continuing the above process and replacing ` by `1.

Example 6.3.3. By replacing κ by m, we get

∆−ν` e1(κ
(1)
` ) = [1− (1 + `)−1]

−ν
eκ

(1)
` , |`| < 1 and κ

`
∈ N, and

∆−ν` (1 + `)
κ
` =

[
1− (1 + `)−`

]−ν
(1 + `)

κ
` .

Theorem 6.3.4. For ν > 0, |κ
`
< 1|, we have

∆−ν` (1 + `)
κ
` = (1 +

1

`
)ν(1 + `)

κ
` . (6.19)

Proof: Applying ∆` on u(κ) = (1 + `)
κ
` , we get

∆`u(κ) = (1 + `)
κ
` − (1 + `)

κ−`
` which yields

(1 + `)
κ
` − (1 + `)

κ
` (1 + `)−1 = (1 + `)

κ
`

[
1− 1

1 + `

]
= (1 + `)

κ
`

`

(1 + `)

∆−1
` (1 + `)

κ
` = (1 + `)

κ
` `−1(1 + `) =

(
1 + 1

`

)
(1 + `)

κ
` and

Similarly, ∆−2
` (1 + `)

κ
` =

(
1 + 1

`

)2
(1 + `)

κ
` .

In general, ∆−m` (1 + `)
κ
` = (1 + 1

`
)m(1 + `)

κ
` .

Now the proof follows by replacing m by ν.
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Theorem 6.3.5. e2(κ`) is a solution of the difference equation

u(κ) +
1

`
∆`u(κ) = (1 + `)

κ
` , κ

`
∈ N, ` 6= 0, |`| ≤ 1.

Proof: e2(κ`) = 1 +
κ

(2)
`

2!
+
κ

(4)
`

4!
+
κ

(6)
`

6!
+ · · ·

Taking ∆` on both sides, we get

∆`e2(κ`) =
`κ

(1)
`

1!
+
`κ

(3)
`

3!
+ · · · (6.20)

Similarly

1

`
∆`e2(κ`) =

κ
(1)
`

1!
+
κ

(3)
`

3!
+ · · · (6.21)

Adding (6.20) and (6.21), we get e2(κ`) +
1

`
∆`e2(κ`) = e(κ`) = (1 + `)

κ
` .

Now the proof follows by taking u(κ) = e2(κ`).

Theorem 6.3.6. en(κ`) is a solution to the difference equation

n−1∑
r=0

1

`r
∆r
`u(κ) = e1(κ`). (6.22)

Proof: From ∆`u(κ) = u(κ+ `)− u(κ) and ∆`κ
(r)
` = n`κ

(r−1)
` , we find

en(κ`) = 1 +
κ

(n)
`

n!
+
κ

(2n)
`

(2n)!
+
κ

(3n)
`

(3n)!
+ · · ·+,

and hence,

∆`en(κ`) =
n`κ

(n−1)
`

n!
+

(2n)`κ
(2n−1)
`

(2n)!
+ · · ·

1

`
∆`en(κ`) =

κ
(n−1)
`

(n− 1)!
+

κ
(2n−1)
`

(2n− 1)!
+ · · ·

1

`2
∆2
`en(κ`) =

κ
(n−1)
`

(n− 1)!
+

κ
(2n−1)
`

(2n− 1)!
+ · · ·

1

`n−1
∆n−1
` en(κ`) =

κ
(1)
`

(1)!
+

κ
(n+1)
`

(n+ 1)!
+ · · ·
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Adding the above identities, we get

en(κ`) +
1

`
∆`en(κ`) + · · ·+ 1

`n−1
∆n−1
` en(κ`) = e1(κ`). Finally we get (6.22).

Corollary 6.3.7. If κ is integer multiples of `, then en(κ`) is a solution to the

`−difference equation
n−1∑
r=0

1

`r
∆r
`u(κ) = (1 + `)

κ
` . (6.23)

Corollary 6.3.8. The differential equation
n−1∑
r=0

Dru(κ) = eκ has a solution

en(κ) = 1 +
κn

n!
+
κ2n

2n!
+ · · ·

Proof: As `→ 0, in (6.23) we get the proof.

Using these functions, we can obtain many results and application in number

theory and in calculus.



Chapter 7

2D-Fibonacci Summation with

Extorial Functions

7.1 Introduction

In this chapter, second order Fibonacci summation formula of product

of polynomial and extorial functions are obtained by two dimensional second order

Fibonacci nabla difference operator, its inverse and the two dimensional second order

Fibonacci numbers. The function obtained by replacing polynomial into factorial

polynomial in the expansion of exponential function is called extorial function. We

have mentioned properties of extorial function in the chapter. Here we apply extorial

function to two dimensional difference equation.

103



7. 2D-Fibonacci Summation with Extorial Functions 104

7.2 2D Nabla Difference Operator

In this section, the definition of 2D Nabla difference operator is defined

as follows.

Definition 7.2.1. Let u be real valued function a = (a1, a2) and ` = (`1, `2) and

(κ1, κ2) ∈ R2 The Nabla `−difference operator ∇
(a)`

on u(κ1, κ2) is defined as

∇
(a)`

v(κ1, κ2) = v(κ1, κ2)− a1v(κ1 + `1, κ2 + `2)− a2v(κ1 + 2`1, κ2 + 2`2). (7.1)

and its inverse is given by

∇
(a)`

v(κ1, κ2) = u(κ1, κ2)⇒ v(κ1, κ2) =
−1

∇
(a)`

u(κ1, κ2) + c, (7.2)

where c is an arbitrary constant.

Remark:1 For our convenient, we denote E(is`) = e((is`1)s`1)e((is`2)s`2),

E(isκ) = e((isκ1)s`1)e((isκ2)s`2) and E(iκ) = e((iκ1)`1)e((iκ2)`2)

Example 7.2.2. Let 1−
2∑
j=1

aje((j`1)`1)e((j`2)`2) 6= 0. By (7.1) and (7.2), we have

∇
(a)`

E(κ) = E(κ)− a1E(κ+ `)− a2E(κ+ 2`). (7.3)

= E(κ)[1− a1E(`)− a2e(2(`1)`1)e(2(`2)`2)],

which yields

−1

∇
(a)`

E(κ) =
E(κ)

1−
2∑
j=1

aje((j`1)`1)e((j`2)`2)

+ c. (7.4)
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7.3 2D Fibonacci Summation Formula

Here, two dimensional summation formula is obtained by equating closed

form and summation form solutions of 2D difference equation.

Theorem 7.3.1. Let F n denotes the nth term of the two parameter Fibonacci

sequence given in (6.1) and v(κ1, κ2) be a solution of the equation ∇
(a)`

v(κ1, κ2) =

u(κ1, κ2), (κ1, κ2) ∈ R2, then we have

v(κ1, κ2)− (FnFn−1 + a2Fn−1)v(κ1 + (n+ 1)`1, κ2 + (n+ 1)`2)

− a2Fnv(κ1 + (n+ 2)`1, κ2 + (n+ 2)`2) =
n∑
i=0

Fiu(κ1 + i`1, κ2 + i`2). (7.5)

Proof. From (7.1) and (7.2), we get

v(κ1, κ2) = u(κ1, κ2) + a1v(κ1 + `1, κ2 + `2) + a2v(κ1 + 2`1, κ2 + 2`2). (7.6)

Replacing κ1 by κ1+`1, κ2 by κ2+`2 and then substituting the value v(κ1+`1, κ2+`2)

in (7.6), we obtain

v(κ1, κ2) = u(κ1, κ2) + a1u(κ1 + `1, κ2 + `2) + (a2
1 + a2)v(κ1 + 2`1, κ2 + 2`2)

+ a1a2v(κ1 + 3`1, κ2 + 3`2). (7.7)

Replacing κ1 by κ1 + 2`1, κ2 by κ2 + 2`2 and then substituting the value

v(κ1 + 2`1, κ2 + 2`2) in (7.7), we obtain

v(κ1, κ2) = u(κ1, κ2) + a1u(κ1 + `1, κ2 + `2) + (a2
1 + a2)u(κ1 + 2`1, κ2 + 2`2)
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+ ((a2
1 +a2)a1 +a1a2)v(κ1 + 3`1, κ2 + 3`2) + (a2

1 +a2)a2v(κ1 + 4`1, κ2 + 4`2),

which can be expressed as

v(κ1, κ2) = F0u(κ1, κ2) + F1u(κ1 + `1, κ2 + `2) + F2u(κ1 + 2`1, κ2 + 2`2)

+ (F2F1 + F1a2)v(κ1 + 3`1, κ2 + 3`2) + F2a2v(κ1 + 4`1, κ2 + 4`2)

Repeating this process again and again and by induction, we arrive (7.5).

Corollary 7.3.2. If
2∑
j=1

aje((j`1)`1)e((j`2)`2) 6= 1, then we have

E(κ)− [Fn−1Fn + Fn−1a2]e((κ1 + (n+ 1)`1)`1)e((κ2 + (n+ 1)`2)`2)

1−
2∑
j=1

aje((j`1)`1)e((j`2)`2)

−Fna2e((κ2 + (n+ 2)`2)`2)e((κ2 + (n+ 1)`2)`2)

1−
2∑
j=1

aje((j`1)`1)e((j`2)`2)

=
n∑
i=0

Fie((κ1 + i`1)`1)e((κ2 + i`2)`2). (7.8)

Proof. Taking u(κ1, κ2) = E(κ), and applying (7.4), ∇
(a)`

v(κ1, κ2) = u(κ1, κ2),

v(κ1, κ2) =
−1

∇
(a)`

u(κ1, κ2) =
E(κ)

1−
2∑
j=1

aje((j`1)`1)e((j`2)`2)

.

Substituting v(κ1, κ2) and u(κ1, κ2) in (7.5) gives (7.8).

The following example is a numerical verification for (7.8).

Example 7.3.3. Taking κ1 = 4, κ2 = 5, n = 2, a1 = 2, a2 = 2, `1 = `2 = 1 in

(7.8),and using F0 = 1, F1 = 2, F2 = 6,we find

e(41)e(51)− 16e(71)e(81)− 12e(81)e(91)

1− 2e(11)e(11)− e(21)e(21)
=

2∑
i=0

Fie((4 + i)1)e((5 + i)1).
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Applying the extorial values, we arrive

(16)(32)− 12(128)(256)− 5(256)(512)

−39

= F0e(41)e(51) + F1e(51)e(61) + F2e(61)e(71) = 53760.

Theorem 7.3.4. Let
2∑
j=1

ajE(js`) 6= 1. Then an exact solution of the 2D difference

equation ∇
(a:`)

v(κ1, κ2) = κm1
1 κm2

2 E(sκ) is obtained as

−1

∇
(a)`

κm1
1 κm2

2 E(sκ) =
κm1

1 κm2
2 E(sκ)

1− a1E(s`)− a2E(2s`)
+

m1∑
i=0

m2∑
j=0

bij
−1

∇
(a)`

κm1−i
1 κm2−j

2 E(sκ)

(7.9)

where bij =
`i1`

j
2(a1E(s`) + 2i2ja2E(2s`))

1− a1E(s`)− a2E(2s`)
.

Proof. We give proof by induction method. Consider the case m1 = 1,m2 = 0

By taking v(κ) =
κ1κ

0
2E(sκ)

1− a1E(s`)− a2E(2s`)
in (7.1), we get

−1

∇
(a)`

κ1κ
0
2E(sκ) =

κ1κ
0
2E(sκ)

1− a1E(s`)− a2E(2s`)
+

`1(a1E(s`) + 2a2E(2s`))

(1− a1E(s`)− a2E(2s`))2
(7.10)

Consider the case m1 = 0,m2 = 1.

Taking v(κ) =
κ0

1κ2E(sκ)

1− a1E(s`)− a2E(2s`)
in (7.1) gives

−1

∇
(a)`

κ0
1κ2E(sκ) =

κ0
1κ2E(sκ)

1− a1E(s`)− a2E(2s`)
+

`2(a1E(s`) + 2a2E(2s`))

(1− a1E(s`)− a2E(2s`))2
. (7.11)

When m1 = m2 = 1, by taking v(κ) =
κ1κ2E(sκ)

1− a1E(s`)− a2E(2s`)
in (7.1), we get

∇
(a)`

κ1κ2E(sκ)

1− a1E(s`)− a2E(2s`)
=

κ1κ2E(sκ)

1− a1E(s`)− a2E(2s`)
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−a1(κ1 + `1)(κ2 + `2)E(s(κ+ `))

1− a1E(s`)− a2E(2s`)
− a2(κ1 + 2`1)(κ2 + 2`2)E(s(κ+ `))

1− a1E(s`)− a2E(2s`)

= κ1κ2E(sκ)− κ1`2E(sκ)(a1E(s`) + 2a2E(2s`))

1− a1E(s`)− a2E(2s`)

− κ2`1E(sκ)(a1E(s`) + 2a2E(2s`))

1− a1E(s`)− a2E(2s`)
− `1`2E(sκ)(a1E(s`) + 4a2E(2s`))

1− a1E(s`)− a2E(2s`)
.

Applying
−1

∇
(a)`

on both sides, gives

−1

∇
(a)`

κ1κ2E(sκ) =
κ1κ2E(sκ)

1− a1E(s`)− a2E(2s`)

+
(κ1`2 + κ2`1)E(sκ)(a1E(s`) + 2a2E(2s`))

(1− a1E(s`)− a2E(2s`))2
+

2`1`2E(sκ)(a1E(s`) + 2a2E(2s`))2

(1− a1E(s`)− a2E(2s`))3

+
`1`2E(sκ)(a1E(s`) + 4a2E(2s`))

(1− a1E(s`)− a2E(2s`))2
. (7.12)

When m1 = 2,m2 = 0, by taking v(κ) =
κ2

1κ
0
2E(sκ)

1− a1E(s`)− a2E(2s`)
in (7.1), we get

∇
(a)`

κ2
1κ

0
2E(sκ)

1− a1E(s`)− a2E(2s`)
=

κ2
1κ

0
2E(sκ)

1− a1E(s`)− a2E(2s`)

−a1(κ1 + `1)2(κ2 + `2)0e((sκ1 + `1)s`1)e((sκ2 + `2)s`2)

1− a1E(s`)− a2E(2s`)

−a2(κ1 + 2`1)2(κ2 + 2`2)0e((sκ1 + `1)s`1)e((sκ2 + `2)s`2)

1− a1E(s`)− a2E(2s`)

= κ2
1E(sκ)− 2κ1`1E(sκ)(a1E(s`) + 2a2E(2s`))

1− a1E(s`)− a2E(2s`)

− κ2`1E(sκ)(a1E(s`) + 2a2E(2s`))

1− a1E(s`)− a2E(2s`)

− `2
1E(sκ)(a1E(s`) + 4a2E(2s`))

1− a1E(s`)− a2E(2s`)
.

Applying
−1

∇ on both sides, we get
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−1

∇
(a)`

κ2
1E(sκ) =

κ2
1E(sκ)

1− a1E(s`)− a2E(2s`)
+

2κ1`1E(sκ)(a1E(s`) + 2a2E(2s`))

(1− a1E(s`)− a2E(2s`))2

+
2`2

1E(sκ)(a1E(s`) + 2a2E(2s`))2

(1− a1E(s`)− a2E(2s`))3
+
`2

1E(sκ)(a1E(s`) + 4a2E(2s`))

(1− a1E(s`)− a2E(2s`))2
. (7.13)

Similarly,m1 = 0,m2 = 2, by taking v(κ) =
κ0

1κ
2
2E(sκ)

1− a1E(s`)− a2E(2s`)
in (7.1) gives

−1

∇
(a)`

κ2
2E(sκ) =

κ2
2E(sκ)

1− a1E(s`)− a2E(2s`)
+

2κ2`2E(sκ)(a1E(s`) + 2a2E(2s`))

(1− a1E(s`)− a2E(2s`))2

+
2`2

2E(sκ)(a1E(s`) + 2a2E(2s`))2

(1− a1E(s`)− a2E(2s`))3
+
`2

2E(sκ)(a1E(s`) + 4a2E(2s`))

(1− a1E(s`)− a2E(2s`))2
. (7.14)

When m1 = 2,m2 = 1,by taking v(κ) =
κ2

1κ2E(sκ)

1− a1E(s`)− a2E(2s`)
in (7.1), gives

−1

∇
(a)`

κ2
1κ2E(sκ) =

κ2
1κ2E(sκ)

1− a1E(s`)− a2E(2s`)
+

2κ1κ2`1E(sκ)(a1E(s`) + 2a2E(2s`))

(1− a1E(s`)− a2E(2s`))2

+
4κ1`1`2E(sκ)(a1E(s`) + 2a2E(2s`))2

(1− a1E(s`)− a2E(2s`))3
+

2κ2`
2
1E(sκ)(a1E(s`) + 2a2E(2s`))2

(1− a1E(s`)− a2E(2s`))3

+
6`2

1`2E(sκ)(a1E(s`) + 2a2E(2s`))3

(1− a1E(s`)− a2E(2s`))4
+
κ2`

2
1E(sκ)(a1E(s`) + 4a2E(2s`))

(1− a1E(s`)− a2E(2s`))2

+
κ2

1`2E(sκ)(a1E(s`) + 2a2E(2s`))

(1− a1E(s`)− a2E(2s`))2
+

2κ1`1`2E(sκ)(a1E(s`) + 4a2E(2s`))

(1− a1E(s`)− a2E(2s`))2

+
6`2

1`2E(sκ)(a1E(s`) + 2a2E(2s`))(a1E(s`) + 4a2E(2s`))

(1− a1E(s`)− a2E(2s`))3

+
`2

1`2E(sκ)(a1E(s`) + 8a2E(2s`))3

(1− a1E(s`)− a2E(2s`))2
. (7.15)

Similarly,m1 = 1,m2 = 2, by taking v(κ) =
κ1κ

2
2E(sκ)

1− a1E(s`)− a2E(2s`)
in (7.1), we get

−1

∇
(a)`

κ1κ
2
2E(sκ) =

κ1κ
2
2E(sκ)

1− a1E(s`)− a2E(2s`)
+

2κ1κ2`2E(sκ)(a1E(s`) + 2a2E(2s`))

(1− a1E(s`)− a2E(2s`))2

+
4κ2`1`2E(sκ)(a1E(s`) + 2a2E(2s`))2

(1− a1E(s`)− a2E(2s`))3
+

2κ1`
2
2E(sκ)(a1E(s`) + 2a2E(2s`))2

(1− a1E(s`)− a2E(2s`))3

+
6`1`

2
2E(sκ)(a1E(s`) + 2a2E(2s`))3

(1− a1E(s`)− a2E(2s`))4
+
κ1`

2
2E(sκ)(a1E(s`) + 4a2E(2s`))

(1− a1E(s`)− a2E(2s`))2
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+
6`2

1`2E(sκ)(a1E(s`) + 2a2E(2s`))(a1E(s`) + 4a2E(2s`))

(1− a1E(s`)− a2E(2s`))3

+
κ2

2`1E(sκ)(a1E(s`) + 2a2E(2s`))

(1− a1E(s`)− a2E(2s`))2
+

2κ2`1`2E(sκ)(a1E(s`) + 4a2E(2s`))

(1− a1E(s`)− a2E(2s`))2

+
6`1`

2
2E(sκ)(a1E(s`) + 2a2E(2s`))(a1E(s`) + 4a2E(2s`))

(1− a1E(s`)− a2E(2s`))3

+
`1`

2
2E(sκ)(a1E(s`) + 8a2E(2s`))

(1− a1E(s`)− a2E(2s`))2
(7.16)

When m1 = 2,m2 = 2, by taking v(κ) =
κ2

1κ
2
2E(sκ)

1− a1E(s`)− a2E(2s`)
in (7.1), we get

∇
(a)`

κ2
1κ

2
2E(sκ)

1− a1E(s`)− a2E(2s`)
=

κ2
1κ

2
2E(sκ)

1− a1E(s`)− a2E(2s`)

−a1(κ1 + `1)2(κ2 + `2)2E(s(κ+ `))

1− a1E(s`)− a2E(2s`)
− a2(κ1 + 2`1)2(κ2 + 2`2)2E(s(κ+ `))

1− a1E(s`)− a2E(2s`)

Applying
−1

∇
(a)`

on both sides, we get

In general, by taking v(κ) =
κm1

1 κm2
2 E(sκ)

1− a1E(s`)− a2E(2s`)
in (7.1)

∇
(a)`

κm1
1 κm2

2 E(sκ)

1− a1E(s`)− a2E(2s`)
=

κm1
1 κm2

2 E(sκ)

1− a1E(s`)− a2E(2s`)

−a1(κ1 + `1)m1(κ2 + `2)m2E(s(κ+ `))

1− a1E(s`)− a2E(2s`)
− a2(κ1 + 2`1)m1(κ2 + 2`2)m2E(s(κ+ `))

1− a1E(s`)− a2E(2s`)

=
κm1

1 κm2
2 E(sκ)

1− a1E(s`)− a2E(2s`)
−
a1

m1∑
r1=1

m1cr1κ
m1−r1
1 `r11

m2∑
r2=1

m2cr2κ
m2−r2
2 `r22 E(sκ)

1− a1E(s`)− a2E(2s`)

−
a2

m1∑
r1=1

m1cr1κ
m1−r1
1 (2`1)r1

m2∑
r2=1

m2cr2κ
m2−r2
2 (2`2)r2E(sκ)

1− a1E(s`)− a2E(2s`)

By expanding the term, we get
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∇
(a)`

κm1
1 κm2

2 E(sκ)

1− a1E(s`)− a2E(2s`)
= b00κ

m1
1 κm2

2 + b01κ
m1
1 κm2−1

2 + b02κ
m1
1 κm2−2

2

+ · · ·+ b0m2κ
m1
1 κ0

2 + b10κ
m1−1
1 κm2

2 + · · ·+ bm10κ
0
1κ

m2
2

By iteration ,we can find (7.9).

7.4 2D-Fibonacci Summation for Factorials and

Extorials

In this section, by equating clossed and summation form, we are able to

obtain two dimensional summation formula related to factorial and extorial function.

Theorem 7.4.1. If v(κ) =
−1

∇
(a)`

κm1
1 κm2

2 E(sκ) is an exact solution of (7.9), then

−1

∇
(a)`

κm1
1 κm2

2 E(sκ)− (FnFn−1 + a2Fn−1)
−1

∇
(a)`

(κ1 + (n+ 1)`1)m1

(κ2 + (n+ 1)`2)m2e((s(κ1 + (n+ 1))s`1)e((s(κ2 + (n+ 1))s`2)

−a2Fn
−1

∇
(a)`

(κ1 +(n+2)`1)m1(κ2 +(n+2)`2)m2e((s(κ1 +(n+2))s`1)e((s(κ2 +(n+2))s`2)

=
n∑
i=0

Fi(κ1 + i`1)m1(κ2 + i`2)m2e(s(κ1 + i`1)s`1)e(s(κ2 + i`2)s`2). (7.17)

Proof. Taking u(κ1, κ2) = κm1
1 κm2

2 E(sκ) in Theorem 7.3.1, we get (7.17).

Example 7.4.2. The following is an example for verification of (7.17). If κ1 = 4,

κ2 = 2, n = 2,m2 = 0 and m1, a1, a2, `1, `2 are 1, the (7.17) becomes

−1

∇
(1,1)

4e(41)e(21)− 3
−1

∇
(1,1)

7e(71)e(51)− 2
−1

∇
(1,1)

8e(81)e(61)
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=
2∑
i=0

Fi(4 + i)e((4 + i)1)e((2 + i)1) = 13824.

Theorem 7.4.3. Let u(κ1, κ2) and v(κ1, κ2) be the real valued function. Then,

−1

∇
(a:`)

[u (κ1, κ2) v (κ1, κ2)] = u (κ1, κ2)
−1

∇
(a:`)

v (κ1, κ2)

− a1

−1

∇
(a:`)

[
−1

∇
(a:`)

v (κ1 + `1, κ2 + `2) ∇
(1,0:`)

u (κ1, κ2)

]

− a2

−1

∇
(a:`)

[
−1

∇
(a:`)

v (κ1 + 2`1, κ2 + 2`2) ∇
(0,1:`)

u (κ1, κ2)

]
. (7.18)

Proof. Taking v (κ1, κ2) = u (κ1, κ2)w (κ1, κ2) in (7.1), we get

∇
(a:`)

[u (κ1, κ2)w (κ1, κ2)] = u (κ1, κ2)w (κ1, κ2)

− a1u (κ1 + `1, κ2 + `2)w (κ1 + `1, κ2 + `2)

− a2u (κ1 + 2`1, κ2 + 2`2)w (κ1 + 2`1, κ2 + 2`2)

Adding and Subtracting a1u (κ1, κ2)w (κ1 + `1, κ2 + `2) and

a2u (κ1, κ2)w (κ1 + 2`1, κ2 + 2`2) yields

∇
(a:`)

[u(κ1, κ2)w(κ1, κ2)] = u(κ1, κ2) ∇
(a:`)

w(κ1, κ2) + a1w(κ1 + `1, κ2 + `2) ∇
(1,0:`)

u(κ1, κ2)

+ a2w(κ1 + 2`1, κ2 + 2`2) ∇
(0,1:`)

u(κ1, κ2)

taking w(κ1, κ2) =
−1
∇

(a:`)
v(κ1, κ2) and applying

−1
∇

(a:`)
on both sides, we get (7.18).

Remark:2 For similarity, we denote E(i`) = e((i`1)`1)e((i`2)`2) and

E(iκ) = e((iκ1)`1)e((iκ2)`2)
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Corollary 7.4.4. Let u(κ1, κ2) and v(κ1, κ2) be the real valued functions. Then,

−1

∇
(a:`)

u(κ1, κ2)E(κ) = u(κ1, κ2)
−1

∇
(a:`)

E(κ)

−a1

−1

∇
(a:`)

[
−1

∇
(a:`)

E(κ+ `) ∇
(1,0:`)

u(κ1, κ2)

]
− a2

−1

∇
(a:`)

[
−1

∇
(a:`)

E(κ+ 2`) ∇
(0,1:`)

u(κ1, κ2)

]
. (7.19)

Proof. Taking v(κ1, κ2) = E(κ) in (7.18), yields(7.19)

Corollary 7.4.5. An exact solution of the 2D second order diffference equation

∇
a(`)

v(κ1, κ2) = κ2
1κ

2
2E(κ) is given by

−1

∇
(a:`)

κ2
1κ

2
2E(κ) =

κ2
1κ

2
2E(κ)

1− a1E(`)− a2E(2`)
+

a1`
2
2

−1

∇
(a:`)

κ2
1E(κ+ `)

1− a1E(`)− a2E(2`)

+

2a1`2

−1

∇
(a:`)

κ2
1κ2E(κ+ `)

1− a1E(`)− a2E(2`)
+

a1`
2
1

−1

∇
(a:`)

κ2
2E(κ+ `)

1− a1E(`)− a2E(2`)
+

a1`
2
1`

2
2

−1

∇
(a:`)

E(κ+ `)

1− a1E(`)− a2E(2`)

+

2`2
1`2a1

−1

∇
(a:`)

κ2E(κ+ `)

1− a1E(`)− a2E(2`)
+

2a1`1

−1

∇
(a:`)

κ1κ
2
2E(κ+ `)

1− a1E(`)− a2E(2`)
+

2`1`
2
2a1

−1

∇
(a:`)

κ1E(κ+ `)

1− a1E(`)− a2E(2`)

+

4`1`2a1

−1

∇
(a:`)

κ2κ1E(κ+ `)

1− a1E(`)− a2E(2`)
+

4a2`
2
2

−1

∇
(a:`)

κ2
1E(κ+ 2`)

1− a1E(`)− a2E(2`)
+

4a2`2

−1

∇
(a:`)

κ2
1κ2E(κ+ 2`)

1− a1E(`)− a2E(2`)

+

4a2`
2
1

−1

∇
(a:`)

κ2
2E(κ+ 2`)

1− a1E(`)− a2E(2`)
+

16a2`
2
1`

2
2

−1

∇
(a:`)

E(κ+ 2`)

1− a1E(`)− a2E(2`)
+

16`2
1`2a2

−1

∇
(a:`)

κ2E(κ+ 2`)

1− a1E(`)− a2E(2`)

+

4a2`1

−1

∇
(a:`)

κ1κ
2
2E(κ+ 2`)

1− a1E(`)− a2E(2`)
+

16`1`
2
2a2

−1

∇
(a:`)

κ1E(κ+ 2`)

1− a1E(`)− a2E(2`)
+

16`1`2a2

−1

∇
(a:`)

κ2κ1E(κ+ 2`)

1− a1E(`)− a2E(2`)
.

(7.20)

Proof. Taking u(κ1, κ2) = κ1κ
0
2 in (7.19) and using (7.4), we find
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−1

∇
(a:`)

κ1κ
0
2E(κ) =

κ1κ
0
2E(κ)

1− a1E(`)− a2E(2`)
+

`1a1E(κ+ `)

(1− a1E(`)− a2E(2`))2

+
2`1a2E(κ+ 2`)

(1− a1E(`)− a2E(2`))2
. (7.21)

Similarly, we can find

−1

∇
(a:`)

κ0
1κ2E(κ) =

κ0
1κ2E(κ)

1− a1E(`)− a2E(2`)
+

`2a1E(κ+ `)

(1− a1E(`)− a2E(2`))2

+
2`2a2E(κ+ 2`)

(1− a1E(`)− a2E(2`))2
. (7.22)

Taking u(κ1, κ2) = κ1κ2 in (7.19) and using (7.4), we get

−1

∇
(a:`)

κ1κ2E(κ) =
κ1κ2E(κ)

1− a1E(`)− a2E(2`)
+
a1(κ1`2 + κ2`1 + `1`2)E(κ+ `)

(1− a1E(`)− a2E(2`))2

+
2a2

1`1`2E(κ+ 2`)

(1− a1E(`)− a2E(2`))3
+

8a1a2`1`2E(κ+ 3`)

(1− a1E(`)− a2E(2`))3

+
2a2(κ1`2 + κ2`1 + 2`1`2)E(κ+ 2`)

(1− a1E(`)− a2E(2`))2
+

8a2
2`1`2E(κ+ 4`)

(1− a1E(`)− a2E(2`))3
(7.23)

Taking u(κ1, κ2) = κ2
1κ

0
2 in (7.19) and using (7.4) , we arrive

−1

∇
(a:`)

κ2
1κ

0
2E(κ) =

κ2
1κ

0
2E(κ)

1− a1E(`)− a2E(2`)
+

2κ1a1`1E(κ+ `)

(1− a1E(`)− a2E(2`))2

+
2a2

1`
2
1E(κ+ 2`)

(1− a1E(`)− a2E(2`))3
+

8a1a2`
2
1E(κ+ 3`)

(1− a1E(`)− a2E(2`))3

+
a1`

2
1E(κ+ `)

(1− a1E(`)− a2E(2`))2
+

4κ1a1`1a2E(κ+ 2`)

(1− a1E(`)− a2E(2`))2

+
8a2

2`
2
1E(κ+ 4`)

(1− a1E(`)− a2E(2`))3
+

4a2`
2
1e((κ1 + 2`1)`1)e((κ2 + 2`2)`2)

(1− a1E(`)− a2E(2`))2
. (7.24)

Taking u(κ1, κ2) = κ0
1κ

2
2 in (7.19) and using (7.4), we obtain

−1

∇
(a:`)

κ0
1κ2E(κ) =

κ0
1κ

2
2E(κ)

1− a1E(`)− a2E(2`)
+

2κ2a1`2E(κ+ `)

(1− a1E(`)− a2E(2`))2
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+
2a2

1`
2
2E(κ+ 2`)

(1− a1E(`)− a2E(2`))3
+

8a1a2`
2
2E(κ+ 3`)

(1− a1E(`)− a2E(2`))3

+
a1`

2
2E(κ+ `)

(1− a1E(`)− a2E(2`))2
+

4κ2a2`2a2E(κ+ 2`)

(1− a1E(`)− a2E(2`))2

+
8a2

2`
2
2E(κ+ 4`)

(1− a1E(`)− a2E(2`))3
+

4a2`
2
2e((κ1 + 2`1)`1)e((κ2 + 2`2)`2)

(1− a1E(`)− a2E(2`))2
. (7.25)

Taking u(κ1, κ2) = κ2
1κ2 in (7.19) and using (7.4), we get

−1

∇
(a:`)

κ2
1κ2E(κ) =

κ2
1κ2E(κ)

1− a1E(`)− a2E(2`)

+
a1[κ2

1`2 + κ2`
2
1 + `2

1`2 + 2`1κ1κ2 + 2κ1`1`2]E(κ+ `)

(1− a1E(`)− a2E(2`))2

+
2a2

1`1[2κ1`2 + κ2`1 + 3`1`2]E(κ+ 2`)

(1− a1E(`)− a2E(2`))3

+
2a2[κ2

1`2 + 2κ2`
2
1 + 4`2

1`2 + 2`1κ1κ2 + 4κ1`1`2]E(κ+ 2`)

(1− a1E(`)− a2E(2`))2

+
6a3

1`
2
1`2E(κ+ 3`)

(1− a1E(`)− a2E(2`))4
+

4a1a2`1[2κ2`1 + 4κ1`2 + 9`1`2]E(κ+ 3`)

(1− a1E(`)− a2E(2`))3

+
36a2

1a2`
2
1`2E(κ+ 4`)

(1− a1E(`)− a2E(2`))4
+

8a2
2`1[2κ1`2 + κ2`1 + 6`1`2]E(κ+ 4`)

(1− a1E(`)− a2E(2`))3

+
72a2

2a1`
2
1`2e((κ1 + 5`1)`1)e((κ2 + 5`2)`2)

(1− a1E(`)− a2E(2`))4
+

48a3
2`

2
1`2e((κ1 + 6`1)`1)e((κ2 + 6`2)`2)

(1− a1E(`)− a2E(2`))4
.

(7.26)

Taking u(κ1, κ2) = κ1κ
2
2 in (7.19) and using (7.4), we derive

−1

∇
(a:`)

κ1κ
2
2E(κ) =

κ1κ
2
2E(κ)

1− a1E(`)− a2E(2`)

+
a1[κ2

2`1 + κ1`
2
2 + `1`

2
2 + 2`2κ1κ2 + 2κ2`1`2]E(κ+ `)

(1− a1E(`)− a2E(2`))2

+
2a2

1`2[2κ2`1 + κ1`2 + 3`1`2]E(κ+ 2`)

(1− a1E(`)− a2E(2`))3
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+
2a2[κ2

2`1 + 2κ1`
2
2 + 4`1`

2
2 + 2`2κ1κ2 + 4κ2`1`2]E(κ+ 2`)

(1− a1E(`)− a2E(2`))2

+
6a3

1`1`
2
2E(κ+ 3`)

(1− a1E(`)− a2E(2`))4
+

4a1a2`2[2κ1`2 + 4κ2`1 + 9`1`2]E(κ+ 3`)

(1− a1E(`)− a2E(2`))3

+
36a2

1a2`1`
2
2E(κ+ 4`)

(1− a1E(`)− a2E(2`))4
+

8a2
2`2[2κ2`1 + κ1`2 + 6`1`2]E(κ+ 4`)

(1− a1E(`)− a2E(2`))3

+
72a1a

2
2`1`

2
2e((κ1 + 5`1)`1)e((κ2 + 5`2)`2)

(1− a1E(`)− a2E(2`))4
+

48a3
2`1`

2
2e((κ1 + 6`1)`1)e((κ2 + 6`2)`2)

(1− a1E(`)− a2E(2`))4
.

(7.27)

By taking u(κ1, κ2) = κ2
1κ

2
2 in (7.19) and using (7.4), we get (7.20).

Corollary 7.4.6. If v(κ1, κ2) =
−1

∇
(a:`)

κ2
1κ

2
2E(κ) is an exact solution given by (7.20),

then the 2D-Fibonacci summation formula for κ2
1κ

2
2E(κ) is

n∑
i=0

Fi(κ+ i`)2e((κ+ i`)`) =
−1

∇
(a:`)

κ2
1κ

2
2E(κ)

−(FnFn−1+a2Fn−1)
−1

∇
(a`)

(κ1+(n+1))2(κ2+(n+1))2e((κ1+(n+1)`1)`1)e((κ2+(n+1)`2)`2)

−a2Fn
−1

∇
(a`)

(κ1+(n+2))2(κ2+(n+2))2e((κ1+(n+2)`1)`1)e((κ2+(n+2)`2)`2). (7.28)

Proof. By taking u(κ1, κ2) = κ2
1κ

2
2E(κ) in Theorem 7.3.1, we get (7.28)

Example 7.4.7. Let κ1 = κ2 = a1 = a2 = `1 = `2 = 1, n = 2 in (7.28).Then

−1

∇
(1:1)

e(11)e(11)− 3
−1

∇
(1:1)

4(4)2e(41)e(41)− 2
−1

∇
(1:1)

5(5)2e(51)e(51)

=
2∑
i=0

Fi(1 + i)(1 + i)2e((1 + i)1)e((1 + i)1) = 3588.

The concept of two dimensional difference operator and its difference equations
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are used to obtain solutions of wave equation, which is already mentioned in the

final chapter.



Chapter 8

Extorial in RL Circuits and Heat

Flows

8.1 Exact Solutions of RL Circuits

The resistor and inductor are the most fundamental linear (element having

linear relationship between voltage and current) and passive elements in electric

circuits. When resistor and inductor are connected across voltage supply, the circuit

so obtained is called as RL circuit which can be either in a series or parallel circuit

depending on the nature of connection between the resistor and inductor. The

extorial function act as exact solution of difference equation arrived for current flow

in RL circuits. Here, we obtain exact solutions for difference equation of RL circuits.

118
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8.2 Current Flows in RL Circuit

Consider a RL circuit by using the Kirchhoff’s circuit rule. The differential

equation connecting voltage V, resistance R, current I and induction L in series is

given by first order linear difference equation

V = RI(κ) + L
dI(κ)

dκ
. (8.1)

The discrete analogue of (8.1) is assumed by replacing dI(κ) = ∆I(κ), where

∆I(κ) = I(κ+ 1)− I(κ) and dκ = 1 in (8.1).

The corresponding difference equation for the current flows in RL series circuit in

the discrete case takes the form, at time κ

v(κ) = RI(κ) + L∆I(κ). (8.2)

Due to the resistance of conductor, heat temperature may be raised in the RL

circuit. In that case, we need to modify the difference equation (8.2). In that case

the difference equation (8.2) becomes fractional difference equation as

V = RI(κ) + L∆νI(κ), (0 < ν < 1). (8.3)

Which can be expressed as

V (κ)−RI(κ)

L
= ∆νI(κ)

. The corresponding discrete integral equations

∆−ν
(
V (κ)−RI(κ)

L

)
= I(κ)
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. By applying γth order delta sum given by (3.1),

1

LΓ(ν)

κ−ν∑
s=0

Γ(κ− s)
Γ(κ− s− (ν − 1))

(V (s)−RI(s)) = I(κ), (8.4)

The corresponding fractional difference equation for de-energizing in RL circuit is

obtained by putting v(κ) = 0. In this case, we get

0 = RI(κ) + L∆νI(κ). (8.5)

Which is the same as

∆νI(κ) = −RI(κ)

L
.

I(κ) = ∆−ν
(
−RI(κ)

L

)
= −R

L
∆−νI(κ)

By applying fractional order delta integration (3.1), we obtain

I(κ) =
R

LΓ(ν)

κ−ν∑
s=0

Γ(κ− s)
Γ(κ− s− (ν − 1))

I(s), (8.6)

The solution (8.4) and (8.6) are summation forms. Through our research, we

identifies that these fractional difference equations have exact type solutions, when

the initial time a is taken as zero. We obtain exact solution for the equations (8.2)

and (8.3) using our newly defined extorial functions.

8.3 Extorial Type Solution of RL Circuit

In this section, we find solution of equation (8.2) after arriving at some basic

results of extorial functions. This extorial function is easily obtained by replacing
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polynomial κn into factorial polynomial in the expansion of exponential function

eκ. This function is useful to arrive at solutions for fractional difference equation.

Formal definition and some properties of extorials are given in chapter 4.

Consider the extorial function e1((mκ)(m)) is defined by

e1((mκ)(m)) = 1 +
(mκ)

(1)
m

1!
+

(mκ)
(2)
m

2!
+ · · ·+∞ =

∞∑
r=0

(mκ)
(r)
m

r!
, (8.7)

where (mκ)
(r)
m = (mκ)(mκ−m) · · · (mκ− (r−1)m) for positive integer r, is a falling

polynomial factorial. In general, for real index ν, we have

e(ν)((mκ)(m)) = 1 +
(mκ)

(ν)
m

1!
+

(mκ)
(2ν)
m

2!
+ · · ·+∞ =

∞∑
r=0

(mκ)
(rν)
m

r!
, (8.8)

where (mκ)
(rν)
m = (m)(rν) Γ(κ+ 1)

Γ(K + 1− rν)
and Γ(.) is the gamma function.

Lemma 8.3.1. If e1((mκ)(m)) is an extorial function, then we have

∆e1((mκ)(m)) = (m)e1((mκ)(m)). (8.9)

Proof. Applying ∆ on the extorial function e1((mκ)(m)), we arrive at

∆e1((mκ)(m)) = ∆(1) + ∆
(mκ)

(1)
m

1!
+ ∆

(mκ)
(2)
m

2!
+ · · ·+∞

= 0 +
(m(κ+ 1))

(1)
m

1!
+

(mκ)
(1)
m

1!
+

1

2!

[
(m(κ+ 1))

(2)
m − (mκ)

(2)
m

]
+ · · ·+∞

=
(m)

1!
+

1

2!

[
(mκ+m)(mκ)− (mκ)(mκ−m)

]
+ · · ·+∞

= m+
2m

2!
(mκ)

(1)
m +

3m

3!
(mκ)

(2)
m + · · ·+∞

= m
[
1 +

(mκ)
(κ)
m

1!
+

(mκ)
(2)
m

2!
+ · · ·+∞

]
∆e(mκ)m = (m)e1((mκ)(m)).
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Lemma 8.3.2. The extorial function u(κ) = e1((mκ)(m)) is a solution of equation

(
A∆2 +B∆ + C

)
u(κ) = 0, (8.10)

if m is a root of the auxiliary equation Am2 +Bm+ C = 0.

Proof. If we try u(κ) = e1((mκ)(m)) as a solution of equation(8.10), then it should

satisfy the equation

A∆2e1((mκ)(m)) +B∆e1((mκ)(m)) + Ce1((mκ)(m)) = 0. (8.11)

By linear property of ∆ and the expansion of e1((mκ)(m)), we arrive at

∆`e1((mκ)(m)) = 0 + (m)
(mκ)

(0)
(m)

1!
+

2m(mκ)
(1)
(m)

2!
+

3m(mκ)
(2)
(m)

3!
+ ...

i.e, ∆`e1((mκ)(m)) = m
[
1 +

(mκ)
(1)
(m)

1!
+

(mκ)
(2)
(m)

2!
+ ...

]
= me1((mκ)(m)),

which yields

∆2
`e1((mκ)(m)) = (m)∆`e1((mκ)(m)) = (m)2e1((mκ)(m)).

Applying the values of ∆e1((mκ)(m)) and ∆2
`e1((mκ)(m)) in (8.11), we obtain(

Am2 +Bm+ C
)
e1((mκ)(m)) = 0,

Since e1((mκ)m) 6= 0, we get

Am2 +Bm+ C = 0. (8.12)

Hence u(κ) = e1((mκ)(m)) is a solution of (8.10) when m is a root of (8.11).

Remark 8.3.3. The above lemma can be extended to higher order linear difference

equation with constant coefficients.
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Theorem 8.3.4. Let I0 be initial value of I(κ) and ν = 1. The de-energizing

difference equation (8.5) for ν = 1 has a solution of the form

I(κ) = I0e1

((
−R
L
κ

)
(−R
L

)

)
(8.13)

where e1 denotes the extorial function.

Proof. Consider the first order difference equation L∆I(κ) + RI(κ) = 0 which

is obtained from (8.5) by taking ν = 1 and its Auxillary equation ML+R=0.

The auxiliary equation mL + R = 0 has an unique solution m =
−R
L

, L 6= 0.

Applying Lemma 8.3.2 for first order difference equation by taking A = 0, I(t) =

I0e1((−R
L
κ)(−R

L
)), which is a solution of the equation (8.5) for ν = 1.

Theorem 8.3.5. For ν = 1, the energizing difference equation (8.3) has a solution

I(κ) =
V

L(es − 1) +R
+ I0e1

((
−R
L
κ

)
(−R
L

)

)
, (8.14)

where s is a constant.

Proof. Let I(κ) =
V

c
esκ be a solution of equation (8.3) for ν = 1, where c is to be

determined. Since s is a constant, we get ∆esκ = es(κ+1) − esκ = (es − 1)esκ and

∆I(κ) =
V

c
∆esκ =

V

c
esκ(es − 1).

Substituting ν = 1, I(κ) and ∆I(κ) in (8.3), we arrive

I(κ)R + L∆I(κ) = R
V

c
esκ + L

[V
c
esκ(es − 1)

]
,

which yields
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[
R + L∆

]
I =

V

c

[
L(es − 1 +R)

]
esκ.

Hence, taking c = L(es−1+R), we find a particular solution of equation (8.3) when

ν = 1, as

I(κ) =
V

L(es − 1 +R)
esκ. (8.15)

Now (8.14) follows by adding (8.13) and (8.15) the proof is complete.

Corollary 8.3.6. If I0 =
−V
R

, then the extorial solution of difference equation (8.2)

of the RL circuit is I(κ) =
V

R
− V

R
e1

((−R
L
κ
)

(−R
L

)

)
.

Proof. The proof follows by taking s = 0 in (8.14).

Finding the solutions of integer order difference equation is comparatively easier

than the fractional order difference equation.

8.4 Extorial Energizing for RL Circuit

In this section, we derive at the solution of RL circuit model with extorial

energizing. Here, we deal with fractional order difference equation also.

Theorem 8.4.1. The flow of current in the RL circuit creates chaos due to increase

of temperature of heat. In this case, the difference equation of RL circuit becomes

V e1((sκ)s) = RI(κ) + L∆νI(κ), (0 < ν < 1). (8.16)
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Equation (8.16) is νth order fractional difference equation. When there is no choas

in RL circuit, the parameter ν takes integer value.

Theorem 8.4.2. For ν = 1, the difference equation (8.16) has a extorial solution

I(κ) =
V e1((sκ)s`)

L(es − 1) +R
+ I0e1

((−R
L
κ

)
(−R
L

)

)
. (8.17)

Proof. Let I(κ) =
V

c
e1((sκ)s) be a solution of equation (8.16) (ν = 1), where c is

to be determined. Since s is a constant, from (8.17), we get

∆e1((sκ)s) = e1((s(κ+ 1))(s))− e1((sκ)s) which gives

∆I(κ) =
V

c
∆e1((sκ)s) =

V

c
e1((sκ)(s))(e1((1)(s))− 1).

Substituting I(κ) and ∆I(κ) in the above equation, we arrive

I(κ)R + L∆I(κ) = R
V

c
e1((sκ)s) + L

[V
c
e(sκ)(e1(1(s))− 1)

]
,

which yields
[
R + L∆

]
I =

V

c

[
L(e1(`(s))− 1 +R)

]
e1((sκ)s).

Hence taking c = L(e1(1(s)) − 1 + R), we find I(κ) =
V

L(e1(1(s))− 1 +R)
esκ is a

particular solution of equation when ν = 1 and (8.17) follows.

Theorem 8.4.3. For 0 < ν < 1, the energizing fractional difference equation

V e1((sκ)(s)) = I(κ)R + ∆νI(κ), (8.18)

has an extorial solution of the form

V e1((sκ)(s))

L(e1(`(s))− 1)ν +R
+ I0e1((

−R
L

)
1
ν κ

(−R
L

)
1
ν
). (8.19)
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Proof. We try I(κ) = V ce1((sκ)(s)) as a solution of equation (8.18), where c is to

be determined.

∆I(κ) = V c(e1(1(s))− 1)e1((sκ)(s)), ∆2I(κ) = V c(e1(1(s))− 1)2e1((sκ)(s)) · · · ,

∆νI(κ) = V c(e1(1(s))− 1)νe1((sκ)(s)) is obtained from ∆I(κ) = I(κ+ 1)− I(κ).

Substituting I and ∆νI in (8.18), we find

I(κ)R +
L

`
∆νI(κ) = RV ce1((sκ)(s)) + L

[
V c(e1(1(s))− 1)νe1((sκ)(s))

]
= V c

[L
`

(e1(1(s))− 1)ν +R
]
e1((sκ)(s)).

Hence I(κ) =
V

L(e1(1(s))− 1)ν +R
e1((sκ)(s)) is a particular solution of (8.19).

Thus extorial function is used to obtain the solution to RL-circuit

difference equation . Also we have obtained solution of RL circuit of chaos situation

represented by fractional order difference equation.

8.5 Fractional Difference Heat Equation Model

In this section, we apply the alpha and Fibonacci difference operators and obtain

new model of heat equations. The solution of these equations are expressed in

terms of extorial functions. The materials up to three dimensions i.e., rod, thin

plate and medium are taken for study and the transfer of heat is examined. The

two operators (alpha and Fibonacci) are used for the study of transfer of heat and

are defined accordingly.
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Let α 6= 0, l = (1, 1, 1, ..., 1), κ = (κ1, κ2, · · · , κn) ∈ Rn and v(κ) be a real

valued n-variable function defined on Rn. The n-variable α-difference operator,

denoted as ∆α, on v(κ) is defined by

∆
α
v(κ) = v(κ1 + 1, κ2 + 1, ..., κn + 1)− αv(κ1, κ2, ..., κn). (8.20)

This operator becomes partial α-difference operator if we replace by κi+1 in centain

component i. Thus the above definition of the alpha and Fibonacci difference

operators and its equations are employed in the forthcoming sections and solutions

are derived for heat equations.

Also we present solutions of partial fractional alpha difference equation with

polynomial factorial and extorial functions. We also apply these type of solutions

to heat flows. In the following lemma, some identities related to alpha difference

operator on extorial function are given.

Lemma 8.5.1. Let κ(rn) 6= 0, n ∈ N . Then we have the following identities with

extorial function:

(i). ∆αe1(κ) = e1(κ)[1 + 1− α],

(ii). ∆αe(−1)(κ) = e(−1)(κ)[e(−1) − α](−1),

(iii). ∆αe1((−κ)) = e1((−κ))[1 + 1− α], κ > 0.

Proof. (i). By (8.20), and applying ∆α on e1(κ), we arrive

∆αe1(κ) = e1((κ+ 1))− αe1(κ) = e1(κ).e1 − αe1(κ) = e1(κ)[e1(1)− α]
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= e1(κ)[1 +
1

1!
+

1

2!
+ · · · − α] = e1(κ)[1 + 1− α].

(ii). By (8.20), and applying ∆α on e(κ(−1)), we arrive

∆αe(−1)(κ) = e(−1)((κ+ 1))− αe(−1)(κ) = e(−1)(κ).e(−1) − αe(−1)(κ).

= e(−1)(κ)[e(−1) − α](−1).

(iii). follows from (ii) by replacing κ as −κ.

Theorem 8.5.2. If v(κ1, κ2) = e1((κ1)).e1((κ2)) then we have the identities:

(i)∆αv(κ1, κ2) = e1((κ1)).e1((κ2))
[
e1(1)− α

]
,

(ii)∆αv(κ1, κ2) = e1((κ2)).e1((κ1))
[
e1((1))− α

]
.

Proof. (i)∆αv(κ1, κ2) = e1((κ1))
[
∆αe1((κ2))

]
= e1((κ1))

[
e1((κ2 + 1))− αe1((κ2))

]
= e1((κ1))e1((κ2))

[
e1(1)− α

]
.

In the similar way, the proof of (ii) follows.

Assume that v(κ1, κ2) be the temperature of a rod at position κ1 at time κ2,

`1 and `2 be shift values of κ1 and κ2 respectively and γ be the rate of conductivity

of rod. When considering impact of external climate change on the rod, the partial

α - difference equation of heat flow in the rod becomes fractional α- difference

equation

∆ν

α
v(κ1, κ2) = γ

[
∆ν

α
v(κ1, κ2) + ∆ν

α
v(κ1, κ2)

]
. (8.21)
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Theorem 8.5.3. If γ =
[
e1(1)− α/e1(±(1))− α

]
, then the function

v(κ1, κ2) = e1((κ1)).e1((κ2)) is the exact solution of the α- difference equation (8.21).

Proof. By applying the Theorem 8.5.2 , we get the proof.

Corollary 8.5.4. The fractional partial α-difference heat equation (8.21) has a

solution of the form

v(κ1, κ2) = e1((κ1)).e1((κ2)) if γ =
[
(e1(1)− α)ν/(e1(±(1))− α)ν

]
.

Assume that v(κ1, κ2, κ3) be the temperature of a thin plate at position (κ1, κ2)

at time κ3. Let (1,1,1) be the shift values of (κ1, κ2) and κ3 and γ be the rate of

conductivity of thin plate. The fractional partial α-difference heat equation of thin

plate is given by

∆ν

α
v(κ1, κ2, κ3) = γ

{
∆ν

α
v(κ1, κ2, κ3) + ∆ν

α
v(κ1, κ2, κ3)

}
. (8.22)

Corollary 8.5.5. If γ =
[
1 + 1− α)ν/(e1(±(1)1)− α)ν

]
, then the function

v(κ) =
3∏
i=1

e1(κi(1i)) is an exact solution of the fractional partial heat equation (8.22).

Assume that v(κ1, κ2, κ3, κ4, κ5) be the temperature of a medium at position

(κ1, κ2, κ3) at time κ4 and at density κ5. Let (1,1,1,1,1) be the shift values of

(κ1, κ2, κ3), κ4 and κ5 and γ be the rate of conductivity of medium. The fractional

partial α-difference equation of heat flow in medium is

∆ν

α
v(κ1, κ2, κ3, κ4, κ5) = γ

{
∆ν

α(±1)
v(κ1, κ2, κ3, κ4, κ5)

}
. (8.23)
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Corollary 8.5.6. If γ =
[
1 + 1 − α)ν + e1(1 + 1 − α)ν/(e1(±(1)1) − α)ν

]
, then

v(κ) =
5∏
i=1

e1(κi(1i)) is a closed form solution of the fractional partial α-difference

equation (8.23).

The extorial function is used to obtain solution to heat equation. Also it

is used to obtain fractional order partial difference equation. Thus the extorial

function plays vital role in the fractional calculus and yields several applications.



CONCLUSION

In this book entitled “Extorial Function and Its Applications Using Delta

Operators”, we have attempted to derive a new type of extorial function with the

inclusion of polynomial factorial with two applications. We also improve the already

existing function related to delta operator, alpha delta operator, Fibonacci delta

operator and fractional order delta operator and obtain effective applications in RL

circuits and Heat equation.

Here, various difference operators mentioned above have been employed

in the study of this extorial function. Basic definition and preliminary lemmas

of above said operators and its inverse, Bernoulli’s polynomials, striling numbers,

Riemann zeta factorial function, summation formula, numerical and exact solution

of fractional order difference equation, have been applied for getting main results.

Also summation and closed (exact) form solution of difference equations for certain

type RL circuits and heat equations have been obtained by using extorial function

and inverse of delta operators. Here the exponential function is extended to extorial

131
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function by substituting falling and raising factorials.

This extorial function satisfies certain type fractional and higher

difference equations. Here, when `→ 0, the difference equation becomes differential

equation and the model is simple for solving differential equations. Also fractional

real order extorial function is used to obtain solutions of fractional real order

difference equation. This concept generates applications in the field of physical

sciences, fractional calculus and Numerical methods.

Finally, we want to acknowledge that the theory, results and applications

are originally derived in a unique way. The results incorporated in this book have

been published in various referred international journal.An innovative attempt has

been initiated to make a solution for fractional order difference equation by extorial

and Riemann zeta factorial functions with applications in RL circuit and Heat flow.
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