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Abstract 

This project investigates Pell’s Equation and its generalization, the Pell-

like Equation, highlighting their roles in cryptography. These equations 

form the basis for defining L-Groups, which are specialized 

cryptographic groups used to develop secure protocols such as the Diffie-

Hellman key exchange and the ElGamal cryptosystem. By leveraging the 

mathematical properties of L-Groups, these protocols enable two parties 

to create a shared secret key or encrypt messages without directly 

sharing sensitive data, relying instead on the difficulty of the discrete 

logarithm problem for security. Through structured analysis, the project 

demonstrates how these cryptographic applications protect data 

confidentiality and integrity by translating complex mathematical 

problems into practical security tools. The work illustrates the deep 

connections between number theory and cryptography, showcasing 

Pell’s Equation as a valuable framework for building secure 

communication protocols and encouraging further research in 

mathematically grounded cryptographic methods. 

 

Keywords: Pell-like equations, L-Groups, Diffie-Hellman Key Exchange, 

Elgamal Cryptosystem 

 

Introduction 

This project explores Pell’s Equation and its cryptographic 

applications, highlighting its role as a fundamental problem in number 

theory with significant uses in secure communications. Pell’s Equation, 
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defined as 𝑋2 − 𝑃. 𝑌2 = 1, where P is a square-free positive integer, has 

intrigued mathematicians since antiquity, including through Bhaskara’s 

solution to 𝑋2 − 61. 𝑌2 = 1 and further work by Wallis and Brouncker. 

A broader form, the Pell-Like Equation 𝑋2 − 𝑃. 𝑌2 = 𝑘 (with 𝑘 as any 

integer), has extended these applications, contributing to cryptographic 

methods that utilize the equation’s properties. The project is structured 

into key sections: An introduction to Pell’s Equation and its properties; a 

definition of L-Groups, cryptographic groups derived from Pell-like 

equations; and finally, practical applications of LGroups in cryptography, 

demonstrating how mathematical principles support secure key 

exchanges and encryption. 

  

Pell’s Equation 

In number theory, a Diophantine equation is one for which integer 

solutions are sought (or, sometimes,solutions in rational numbers). 

Typically, the number of variables is greater than the number of 

equations, allowing for the possibility of infinitely many solutions. The 

task of finding these solutions can sometimes be very challenging. A very 

famous quadratic Diophantine equation is Pell’s equation. 

 

Definition 

Let P be a positive integer which is not a perfect square. The 

equation 

x2 − Py2 = 1 (1) 

is called Pell’s equation. 

 

Definition 

A Pell-like equation is a generalization of Pell’s equation, taking 

the form; 

x2 − Py2 = k (2) 

where P is a positive integer that is not a perfect square and k is 

an integer. 

Note: Solutions to Pell’s equation can be found using continued fraction 

expansion of √𝑃. 
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Theorem: If p, q is a positive solution of x2 − Py2 = 1, then  is a convergent 

of the continued fraction expansion of √𝑃. 

 

Example 

Let P = 7, then x2 − 7y2 = 1 

Using the continued fraction expansion of √7,we find that 𝑥 =

8, 𝑦 = 3 satisfies the equation 82 − 7. 32 = 1 

Note: 

The fundamental solution of the equation x2 − Py2 = 1 to be its smallest 

positive solution. 

 

Theorem: Let x1, y1 be the fundamental solution of the equation x2 − Py2 

= 1. Then every positive solution of the equation can be represented as 

pair of integers (xn,yn), where xn and yn defined by  

𝑥𝑛 + 𝑦𝑛√𝑝 = (𝑥1 + 𝑦1√𝑝)𝑛,           𝑛 = 1,2,3, … 

Thus, every positive solution is generated from the powers of the 

fundamental solution (x1, y1) 

  

Example 

For x2 − 35y2 = 1, the fundamental solution is  x = 6,y = 1. Using this, a 

second solution is  x2 = 71,y2 = 12, which satisfies 712 − 35 · 122 = 5041 − 

5040 = 1. 

A third positive solution is x3 = 846,y3 = 143, satisfying 8462 − 35 · 

1432 = 1 

 

L-Groups 

Let 𝑃, 𝑞 be odd primes and , 

where (k/P) =(k/q) = 1. We can define a binary operation on G as follows. 

Since (k/q) = 1 we know there is a ∈ Z such that a2 ≡ k mod q. Thus, for 

(x,y),(z,w) ∈ G, we may define  

Then G is a group under this operation. 

Note: The order of group G is  
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Application of L-Groups 

The Diffie-Hellman Key Exchange 

Symmetric key cryptography relies on a shared secret key for 

both encryption and decryption, posing a challenge in securely 

distributing this key between communicating parties. The Diffie-Hellman 

key exchange protocol addresses this issue by allowing two parties to 

establish a shared secret key over an insecure channel without directly 

sharing the key. This is achieved through the use of a public prime 

number 𝑝 and a base 𝑔, where each party selects a private key, computes 

a public key, and exchanges these public keys. Both parties can then 

compute the same shared secret key based on their private key and the 

other party's public key. The security of this method is grounded in the 

computational difficulty of the discrete logarithm problem, making it 

infeasible for an attacker to derive the private keys from the exchanged 

public information. 

Note: Let G be an L-Group and g ∈ G. Choose x ∈ N and compute b = x·g. 

Make g and b public. The discrete log problem is the problem of finding 

x. 

 

Example 

Suppose that Alice and Bob want to communicate securely using 

a symmetric key cryptosystem. To implement the Diffie-Hellman Key 

exchange they do the following: 

1. Initialization 

Publicly agree on a large prime number q and a generator g of the 

multiplicative group Z∗q of integers modulo q. 

2. Key generation 

Alice generates a private key x (a random integer such that 1 ≤ x ≤ 

p − 2) 

Bob generates a private key y (a random integer such that 1 ≤ y ≤ p−2) 

3. Compute public values 

Alice computes her public value, u=gx mod q,Bob computes his 

public value, v=gy mod q 

4. Exchange public values 

Alice sends her public values u to Bob, Bob sends his public values 

v to Alice. 
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5. Compute shared secret 

Alice computes the shared secret Ka=vx mod q,Bob computes the 

shared secret Kb=uy mod q. 

 

Example 

Let q = 23, g=5 

Choose x=6 and y=15 

Alice’s public value u, 

𝑢 = 𝑔𝑥𝑚𝑜𝑑 𝑞 

= 56 𝑚𝑜𝑑 23 = 8 

Bob’s public value v, 

𝑢 = 𝑔𝑦𝑚𝑜𝑑 𝑞 

= 515 𝑚𝑜𝑑 23 = 19 

 

Alice sends u=8 to Bob and Bob sends v=19 to Alice. 

𝐾𝑎 = 𝑣𝑥𝑚𝑜𝑑 𝑞 

= 196 𝑚𝑜𝑑 23 = 2 

𝐾𝑏 = 𝑢𝑦𝑚𝑜𝑑 𝑞 

= 85 𝑚𝑜𝑑 23 = 2 

Now, both Alice and Bob share the secret value K=Ka=Kb=2, which 

they can use for further secure communication. 

 

Using L-Group: 

We will now implement the Diffie-Hellman key exchange protocol 

in L-Groups. 

 1. They agree on a public L-Group, G and g ∈ G. 

2. Alice and Bob choose random natural numbers x and y (respectively) 

and compute  

          u = x · g, v = y · g (respectively). 

3. Alice publicly sends u to Bob and Bob publicly sends v to Alice. 

4. Alice then computes Ka = x · v and Bob computes Kb = y · u. 

 

Example  

Let P = 3, q = 7, and k = 1, with the 

binary operation defined as: 
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where a is such that a2 ≡ 1 mod 7. 

 step 1: Alice and Bob agree on the public group  

G = {(1,0),(6,0),(2,1),(5,1),(0,3),(0,4),(2,6),(5,6)} 

and the element g = (2,1).  

step 2: Alice chooses x = 4 and computes: 𝑢= 4 · (2,1) 

Let’s compute u: 

 

 

 
So, u = (6,0). 

Bob chooses y = 5 and computes: 𝑦= 5 · (2,1) 

Let’s compute v: 

(2,1) · (2,1) = (0,4) 

(0,4) · (2,1) = (5,1) 

 
So, v = (5,6). 

step 3: Alice sends u = (6,0) to Bob and Bob sends v = (5,6) to Alice. 

step 4: Alice computes: 

Ka = 4 · (5,6) Let’s compute Ka: 
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Thus, Ka = (6,0). 

Bob computes: 

Kb = 5 · (6,0) Let’s compute Kb: 

 
Therefore, both Alice and Bob compute the same shared secret key: 

Ka = Kb = (6,0) 

 

ElGamal Cryptosystem 

ElGamal cryptosystem is a public-key cryptosystem named after 

its inventor, Taher ElGamal. 

The security of an ElGamal system relies on the computational 

infeasibility of the discrete log problem. 

 

Algorithm: 

1. Key generation: Bob uses the following steps to create his public and 

private key. 

(a) Select a large prime number q. 

(b) Select a generator g of the multiplicative group Z∗q of integers 

modulo q. 

(c) Select a private key x,a random integer such that 1 ≤ x ≤ p − 2. 

(d) Compute b=gx mod q. 

(e) The public key is (q,g,b). 

Bob encrypts a message m for Alice which Alice decrypts. 

2. Encryption: Bob should do the following. 

(a) Obtain Alice’s public key (q,g,b). 

(b) Represent the plaintext message m as an integer such that 0 ≤ 

m ≤ p. 

(c) Select a random integer r such that 1 ≤ r ≤ p − 2. 

(d) Compute y=gr mod q. 
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(e) Compute e = m · br mod q. 

(f) The ciphertext is the pair C=(y,e). 

3. Decryption: To recover plaintext m from C, Alice should do the 

following. 

(a) Obtain the shared secret d, d=yx mod q. 

(b) Compute the modular inverse of d,denoted as d−1. 

(c) Recover the plaintext message m, m = e · d−1 mod q. 

 

Example 

Let q=23, g=5 key generation: choose private key x=6 

compute, b = gx mod q 

= 56 mod 23= 8 

public key is (q, g, b) = (23,5,8). 

private key is x=6. 

Encryption: Let m=15, choose r=3 

 y = gr mod q 

 = 53 mod 23= 10 

    e = m · br 

 = 15 · 83 mod 23= 21 

Ciphertext is (𝑦, 𝑒) = (10,21) 

Decryption: Shared secret d,𝑑 = 𝑦𝑥 𝑚𝑜𝑑 𝑞 

               = 106𝑚𝑜𝑑 23 = 6 

       d−1 = 6−1 mod 23 

Using the extended Euclidean algorithm, 

6−1 𝑚𝑜𝑑 23 =  4 

so, m = e · d−1 = 21 · 4 mod 23= 15 

The decrypted plaintext m=15 matches the original plaintext. 

 

Using L-Group: 

We will now implement the ElGamal Cryptosystem protocol in L-

Groups. Suppose that Alice wishes to receive a secret message from Bob. 

She must first create a public key so that Bob can encrypt a message for 

her: 

1. She chooses an L-Group, say G, g ∈ G, and a random x ∈ N. 

2. She then computes b = gx. 

3. Her public key is (g,b,G). 
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4. She also needs to create a private key to be able to decrypt the 

ciphertext after recieving it. Let x be Alice’s private key. 

Let m be the message Bob wants to send to Alice. We assume that, 

through a prescribed standard protocol, m has been converted, by Bob, 

into 

M ∈ G. We call this embedding m in the group, G. 

Bob uses Alice’s public key to encrypt M as follows: 

1. Bob chooses a random r ∈ N. 

2. Bob computes, in G,y = gr,s = br, and then e = s · m. 

3. Bob’s encrypted message is the pair (y,e). 

4. Bob sends (y,e) to Alice. 

To decrypt (y,e), Alice does the following: 

1. She computes d = yx and then C = d−1 · e. 

2. She then unembeds C from G to get M. 

 

Example 

Let P = 5, q = 11, and k = 1, the group G is defined as: 

 
and its elements are 

G = {(1,0),(10,0),(2,4),(9,4),(4,5),(7,5),(4,6),(7,6),(2,7),(9,7)} 

The operation on G is defined as:  (x,y) · (z,w) = (xz + 5yw,xw + yz) 

 

Key Generation: Alice chooses g = (1,0) and a random private key x = 3. 

Alice computes b = gx = (1,0)3 = (1,0). 

Alice’s public key is (g,b,G) = ((1,0),(1,0),G). Alice’s private key is x = 3. 

Encryption: Bob wants to send the message m = (2,4). 

Bob chooses a random r = 2. 

Bob computes y = gr = (1,0)2 = (1,0). 

Bob computes s = br = (1,0)2 = (1,0). 

Bob computes e = s · m = (1,0) · (2,4) = (2,4). 

Bob’s encrypted message is (y,e) = ((1,0),(2,4). 

Decryption: Alice receives (y,e) = ((1,0),(2,4)). 

Alice computes d = yx = (1,0)3 = (1,0). 

The inverse of d = (1,0) is d−1 = (1,0). 

Alice computes C = d−1 · e = (1,0) · (2,4) = (2,4). 

Alice retrieves the original message (2,4). 
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Conclusion 

This project on Pell’s Equation and its applications in 

cryptography provides a link between mathematical exploration and 

practical implications. In the context of cryptography, Pell’s Equation 

emerges as a powerful tool for ensuring the confidentiality, integrity, and 

authenticity of transmitted information. By understanding the principles 

of Pell’s Equation and quadratic irrationalities, cryptographic systems 

can be fortified to withstand adversarial threats and safeguard sensitive 

data. This project reveals the importance of mathematics in Designing 

Secure Communication Protocols. Overall, This Project Serves As A 

Valuable resource for individuals seeking to deepen their understanding 

of Pell’s Equation and its implications in cryptography. By bridging the 

gap between theoretical concepts in number theory and practical 

applications in cryptography, this project offers a new perspective on the 

intricate relation between mathematics and information security. 

Through its exploration of Pell’s Equation and cryptographic principles, 

this project paves the way for further research and innovation in the field 

of secure communication systems. 
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